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Large Time/Length Scale Simulations

e Many systems one needs large times and length scales

— Polymers, Membranes, Proteins, Nanoparticles
— Acceleration algorithms are sometimes useful for structure
but rarely for dynamics

e Step 1 Coarse grain — reduces number of atoms by ~ 10 and

Increase time steps from fs to ps

e Step 2 Build initial state — sometimes easy/sometimes not

 Step 3 Run for a long time on as many processors as possible
— Number beads > 500/processsor
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 Step 3 Run for a long time on as many processors as possible
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Brute Force — nothing else will do



Why are Polymers Interesting?

 Polymers can simultaneously be hard and soft
—Unique Viscoelastic Behavior

e Motion of a polymer
chain Is subject to
complicated topological
constraints




Bead-Spring Model

e Short range - excluded volume
Interaction
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 Energy barrier prohibits chains from cutting through each other
— topology conserved

 Chain stiffness can be included by addition of three-body terms

* MD - velocity-Verlet, time step 0.010 - 0137



Advancement Hardware/Software
Past 25 Years

* Modified scalar code (Rahman)

 \ector MD — 4 processor Cray XMP — late 1980’s
— 10* monomers — 10 million time steps

e Shared Memory — SGI cluster — 1990’s
— 4-8 processors

o Parallel MD Code — LAMMPS - late-1990’s to present
— 256-2048 processors — Intel and Sun Clusters most recent studies
— Y to 1 million monomers — 1-2+ billion time steps
— 5 million monomers — 300+ million time steps
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« WARNING - time_step > 2.14 billion steps bad things
happen with LAMMPS



Motion of Polymers
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Polymer Diffusion

e Simple Liquids
eD~M1 n~M
 Short Polymer Chains (M < M,)

— Longest relaxation time 15 ~ M?
— Intermediate t2 time regime in mean square displacement
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Displacement of Unentangled Polymer
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e Intermediate t4 regime of mass uptake corresponds to Rouse
regime of mean squared displacement



Displacement of Entangled Polymer

Inner monomers
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Stress Relaxation - Melt
e Relaxation after elongation — A= 2, 3, 4 (red, green, blue)

B + end-to-end
distance
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* N=1000

1 —similar results

e N=3500

\ | — reach plateau

C. Svaneborg et al.,
PRL (submitted)

* Relaxation time independent of A. same terminal relaxation

time for all 3 quantities

» Experimental Strains — A=1.01 to 1.05



Self-Healing of Polymer Films

* Development of Entanglements Across an Interface

100x40x100c3

700 kz

F. Pierce, D. Perahia, GSG




How Fast Does a Crack Heal?

10° 10 10* 10 10
t/t

Mass Uptake, Penetration Depth z ~ <r(t)2>1/2

4.8 million
Mmonomers

3.5 million
steps/day
1024 cores

Longest run —
2.5 million
node hours



Healing Depends on Motion of Chain Ends

- N =500
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« Chain ends move much faster, resulting in much faster
self-healing then predicted by theory



Entanglements at Interface

 Primitive Path Analysis
— Contact all chains simultaneously with ends fixed
— (ngec — 1) Nnew beads are placed between adjacent beads
on the original chains and process repeated - n,.=4
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R. Everaers et al., Science 303, 823 (2004); R. Hoy and G. S. Grest, Macromolecules 40, 8389 (2007).



Future Directions

 Outlook for computer modeling Is exciting
— Faster, cheaper computers
— Efficient parallel MD codes
e Larger Systems, Longer Chains, Longer Times
e Smaller strain, shear rates
— Viscosity
— Relaxation after shear
 Constraint Release - Polydispersity
e Semidilute polymers — explicit solvent
 Primitive Path Dynamics — Melts/Networks
 Branched Polymers, Stars, ....
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log G(t)

Viscoelasticity of Entangled Polymer Melt
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e Macroscopic

— Intermediate frequency, time
polymer melt acts as a solid

— Long time, low frequency
polymer acts as a liquid

* Microscopic

— Gaussian coils, R ~ N2

— Stress Is due to entropy loss
of stretched chains

— Polymers as "entropic
springs"

— Stress relaxation due to
Brownian motion of
topologically constraint chains



What contributes to interdiffusion?

— 500 kt

! ! I I ! !
0 0.2 0.4 0.6 0.8 1
end 7 chain
* Chain ends dominate early time interdiffusion
* Rouse motion of chain ends leads to faster mass uptake
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