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Jacobsson et al. EES 2016

Zheng et al. ACS Energy
Lett. 2016

Hybrid perovskite are promising
photovoltaic materials

Mixed covalent, ionic, van der Waals,
and hydrogen bond interactions

Boost in PCE and lifetime by mixing
cations and halogen ions

Morphology dependent on compositions

DFT calculations are computationally intensive to
explore the configurational space

We develop an artificial neural network potential
model to predict energy/forces with efficacy
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The system energy is
partitioned into contributions
from individual atoms,
namely

Esys =
∑

i Ei

The contribution from each atoms
Ei can be computed by a neural
network function

Ei = N (Ii, {W}) =
fa
(

WMfa
(
WM−1fa(· · · fa(W1I) · · · )

))
Ii: feature vector of atom i

{W}: weighting parameters
connecting nodes
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Feature vector Ii of atom i is comprised of a series of descriptor functions converting cartesian
coordinates into fingerprints representing chemical environments. We employed the Gaussian
type descriptors developed by Behler and Parrinello.

Two-Body Descriptor

GII
i =

∑
j 6=i e

−η
(Rij−Rs )2

R2
c fc(Rij )

Khorshidi and Peterson, 2016

Three-Body Descriptor
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Distribution of Feature Vector
of ML Sb
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Training Set Generation

Tetragonal perovskite crystal subjected
to hydrostatic strains −5% + 5%.

AIMD using VASP, Ecutoff = 400eV ,
PAW-PBE with vdW correction
(DFT-D3).

Langevin NVT at 300K.

Randomly picking 2000 images

Training Setup

Pb, I architecture C, N, H architecture Energy Force
Setting 1 {10, 5, 5} {5, 5, 5} © X
Setting 2 {10, 5, 5} {5, 5} © X
Setting 3 {10, 5, 5} {5, 5} © ©

Force training using Tensorflow implemented in Atomistic Machine-Learning Package.
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Perovskite ANN Model Training Results

t

Parity of Trained Model

Crystal Structure Tests

LAMMPS Workshop and Symposium 2019, ABQ Performance of ANN Potential on MAPbI3 Perovskite Crystals 7 / 16



Perovskite ANN Model Training Results

t

Parity of Trained Model Crystal Structure Tests

LAMMPS Workshop and Symposium 2019, ABQ Performance of ANN Potential on MAPbI3 Perovskite Crystals 7 / 16



Validation: Comparing AIMD Trajectory of CUBIC Perovskite
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To further validate the ANN models, coordinates from separate VASP AIMD trajectories of
CUBIC perovskite were fed to ANN models and energies/atomic forces were evaluated.

ANN Models w.o. Force Training

Good energy parities

Fair force parities

ANN Models w. Force Training
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Phonon Density of State Calculations
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I mode

Pb/I mode

MA mode

MA mode



Structure of pair ann
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Usage of pair ann

1 Train the potential using the Atomic Machine Learning Package (AMP)
2 Covert the potential file into pair ann format
3 Potential file format of pair ann:
# potential for Ni-Co-Ti-Zr-Hf

# Pb potential

G2 50

Pb 0.05 0.0383631306 6.82461076

I ......

.....

G4 60

Pb I ....

.....

Nlayer 3

Layer 40

.......

Layer 20

.......

# I potential

.......LAMMPS Workshop and Symposium 2019, ABQ Implementation of ANN Potential into LAMMPS 11 / 16



Usage of pair ann and benchmark
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pair ann can be invoked by the following commands in LAMMPS input script:

.............

pair_style ann 6.5

.............

pair_coeff * * MAPbI3.ann Pb I C N H

.............

Benchmark of the pair ann:

An up to 105 computational
speedup relative to VASP
can be achieved, thereby
allowing exhaustive
sampling of perovskite
materials
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Training Setup

1 MA, FA, I, Br of a variety of concentrations as
well as permutations

2 (10,10) architecture for Pb, I, Br, C, N, and H
atoms

3 Force training enabled
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Atomistic Simulation of FAMAPbIBr
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MAPbI3

MAPbI1.5Br1.5

FAPbIBr3

Potential energy evolution of MD trajectories of
different FAMAPbIBr compositions using trained ANN
potential



Summary

Pro of Neural Network Model

Can successfully evaluate system energies/forces of chemically complex systems
with high fidelity to respective ab initio calculations.

e.g. 2D perovskite, and CoCrFeNi and NiCoTiHfZr HEAs (ongoing work)

Computational speedup allows exhaustive sampling of chemical configurations

Challenges Ahead

Accuracy of neural network model critically depends on the span of training sets.

A self-learning ANN to resolve the issue (ongoing).
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