DisARMMD: Distance-Actuated Reaction Mechanisms in Molecular Dynamics

Jacob Gissinger1, Benjamin Jensen2, Kristopher Wise2

1MSE Program, CU Boulder
2NASA Langley Research Center

newly polymerized
What is the DisARMMD protocol?

- A general, user-friendly method for adjusting topology during classical MD
 - Add and remove specific bonds, angles, dihedrals, and impropers
 - Modify all force field types as well as atomic charges
 - Supports any fixed-valence force field
 - Reaction stabilization options

- Parallel implementation in LAMMPS as **fix bond/react**
 - User inputs: molecule templates of pre- and post-reaction topology
 - A map file relating atoms before and after the reaction

Molecule templates are simple! And quite similar to data files!

www.disarmmd.org
What’s new?

• Recently-Added Options/Extensions to *fix bond/react*:
 • Support for coarse-grained systems (Mark Stevens, Amulya Pervaje)
 • Limit on total occurrences of a given reaction (Wolfgang Verestek)
 Use case: Halt reactions after a certain percentage of crosslinking
 • Customizable behavior of edge atoms (Wolfgang Verestek)
 For example, specify which atomic charges are updated
 • Thanks to Axel Kohlmeyer for multiple bug fixes
 • Thanks to Yoshiaki Kawagoe, Doug Pratt, etc. for additional testing

• Major updates:
 • Delete user-specified atoms based on topology
 • Reactions triggered by bond-breaking
 • Reaction constraints
Delete atoms based on topology

1) Delete unwanted reaction by-products
2) Remove specific molecules based on topology (such as small rings)

nylon polycondensation

deletion of condensed water molecule
Bond-breaking reaction trigger

- Simple bond-length criterion for mechanically-induced chain scission

grab chain ends and pull...
Reaction constraints

- Currently one option: distance constraints between any two atoms
 - Can be used to enforce a relative orientation between reacting molecules
- Other ideas: angle constraint, energy criteria, others?
Large-scale Nylon 6,6 Demo

Setup: 5,000x adipic acid
5,000x hexamethylenediamine

220,000 atoms
Temperature: 530 K
(actual synthesis temp)
Final density: 0.9 g/cm3
Side length: 13.3 nm
3-5 Å reaction cutoff

>99% polymerized

condensed water molecules removed
Chain PDI ≈ 2 Overall PDI (with cycles) $\approx 3.9^*$

(nylon 6,6)

265 repeat units
>7,400 backbone atoms

*Experimental PDI ≈ 4.

>99% polymerized Nylon 6,6: Chains vs. Cycles

weight % cycles:
simulation: 3.7%
experiment: 1-5%\(^1\)

>250 repeat units
(>500 reactant molecules)

Nylon 6,6: chain morphology

\[\langle r^2 \rangle^{1/2} \approx 10 \text{ nm} \]

end-to-end distance

\[\langle R_g^2 \rangle^{1/2} \approx 4 \text{ nm} \]

radius of gyration

\[\left\langle \frac{r^2}{R_g^2} \right\rangle = 6.07 \]

Value for a Gaussian chain: 6

Nylon 6,6: chain radii of gyration

\[R_g \sim N^{1.1} \]

repeat units
Chain growth vs. ring formation

Nylon 6,6

Single topologically-constrained cycle

Cycle constraining two chains: physical ‘slip-link’
Uniaxial extension with chain scission:

- **Uniaxial strain**
 - Highly entangled system
 - Craze formation

- **Chain scission reaction**
 - Relieve topological constraints
 - Activated if C-N bond > 1.67Å
 - Chosen empirically
 - Only 6 chain scissions occurred

(nylon 6,6)
Polystyrene demo

>99% polymerized polystyrene
200,000 atoms (12,500x styrene)

>98.5% polymerized with 3.0 Å distance cutoff, before switching to 3.5 Å

Conclusion: DisARMMMD can handle small monomers with bulky side groups

530 K
13.7 nm box
Epoxy Cross-linking

Simple cross-linking mechanism of an amine to two epoxy molecules

Modeling chemical reactions in classical molecular dynamics simulations.
Summary and Outlook

• The DisARMMD protocol scales well
 • 10,000 nylon precursors \{ \text{true temp. (≈260 C)} \}
 • 12,500 styrene molecules \{ \text{low cutoff 3-5 Å} \}
 \{ >99\% polymerization \}

• Correctly predicts cyclic content, dispersity and chain morphology

• What’s next?
 • More predictive reaction constraints
 • Potential energy surfaces?
 • Large-scale bio applications
 • See Andrew Jewett’s talk tomorrow
 • Features in progress
 • Additional reaction constraints
 • Option to create atoms
Thank you!

www.disarmmd.org