Nanostructurated systems for water remediation process

Samuel E. Baltazar
Physics Department and CEDENNA
Universidad de Santiago de Chile

LAMMPS Workshop 2019
Albuquerque, USA
Motivation: Environmental Pollutants

Water resources

- 0.3% sweet water available in rivers, damps, and lakes.
- Several sources of contamination (natural and anthropogenic).

![Water resources diagram]

Risk of Arsenic Contamination

![Risk of Arsenic Contamination map]

Source: Schwarzenbach et al., 2010. United Nations Environment Programme (UNEP)

- Inorganic Arsenic pollutes the groundwater, occurs naturally on earth in small accounts.
- Inorganic Arsenic is a well known carcinogen (skin, lung, prostate).
Center for the development of Nanoscience & Nanotechnology

Investigation areas:
- Simulations
- Magnetic Nanostructures
- Chemistry of Nanostructures
- Chemical Physics
- Packaging Technology
- Nanobiomedicine

Magnetic nanoparticles
Iron nanoparticles for the removal of Arsenic

Synthesis: Chemical reduction \((\text{FeCl}_3 \cdot 6\text{H}_2\text{O} \text{ with } \text{NaBH}_4)\) [1]

Iron oxide nanoparticles (D ~ 50-100 nm) are synthesized as magnetite, hematite and other iron oxides.

HRTEM of nZVI(a) before and (b-d) after arsenic sorption.

Elemental mapping after arsenic sorption.

- Elemental mapping shows presence of aggregate nanoparticles
- Homogeneous distribution of As, Fe and O on the surface.

Next step: Combining elements
Arsenic sorption on FeCu nanoparticles

FeCu (BMNPs) synthesis: simultaneous chemical reduction [1]
- **Two concentrations**: Fe\textsubscript{0.9}Cu\textsubscript{0.1} and Fe\textsubscript{0.5}Cu\textsubscript{0.5}
- Precursors: FeCl\textsubscript{3}·6H\textsubscript{2}O, CuCl\textsubscript{2}·2H\textsubscript{2}O
- Reduction agent: NaBH\textsubscript{4}

XRD of (a) nZVI, (b) Fe\textsubscript{0.9}Cu\textsubscript{0.1}, (c) Fe\textsubscript{0.5}Cu\textsubscript{0.5}, and (d) Cu NPs. Symbols: (●) = Fe0, (▲) = Cu0, (■) = cuprite, (▼) = tenorite, and (◀) = magnetite.

Fe\textsubscript{0.9}Cu\textsubscript{0.1} shows the highest removal
Capacity: Why?

Nanoparticle systems

Size, shape and composition of nanoparticles affect their physico-chemical properties.
Novel structures can be used in innovative improved applications.

Relying on physical experiments to explore numerous configurations determining possible candidates is a major challenge.

Modeling nanoparticles and simulations offers a possibility to find and study stable configurations.

Possible solution: MD with LAMMPS
We need to find stable nanoparticle morphologies at nanoscale.

Modeling Nanoparticles

LAMMPS setup
- Molecular dynamics simulation using EAM potential for FeCu systems [1]
- MD annealing process. NVT ensemble at each cycle
- Time step: 1 fs
- Cycle steps: $3 \cdot 10^6$
- Temperature: 900K

Local minima searching
- MD annealing allows a restricted exploration of energy landscape to find good candidates in a local region.

Bimetallic nanoparticles
Fe-Cu

Structural optimization based on cycles of thermal annealing and minimizations.

Morphology of stable FeCu nanoparticles Depends on the concentration and size.

Core-Shell and Janus-like structures obtained at low and high Cu concentrations respectively.

Continuous model adjusted for immiscible elements.

Bimetallic nanoparticles
Fe-Cu

How do we use this information in the experiment?

Controlled synthesis of magnetic nanoparticles.

Linear mapping of FeCu BMNPs. The concentration profiles of the Fe$_{0.9}$Cu$_{0.1}$ and Fe$_{0.5}$Cu$_{0.5}$ samples.

Linear Atomic distribution of Fe and Cu in simulated FeCu BMNPs. Yellow lines show the calculated linear mapping of each particle at Fe$_{0.9}$Cu$_{0.1}$ and Fe$_{0.5}$Cu$_{0.5}$ respectively.

What is happening at the atomic level?
Theoretical study of arsenic sorption
We consider two oxidation states: As(III) and As(V) and subspecies.

Subspecies are controlled by acidic conditions present in water.

Electronic configuration and charge density allow to identify reactive sites of As species.

VASP setup
- Structural Optimization of surface and molecules.
- GGA+U method with PAW.
- Exchange-correlation functional PBE
- $E_{\text{cut}} = 400 \text{eV}$

Relaxation of Fe3O4(001) leads to a $(\sqrt{2} \times \sqrt{2})R45^\circ$ reconstruction.
Fe$_3$O$_4$(001) + As species

Adsorption energies

<table>
<thead>
<tr>
<th>Energy</th>
<th>ΔE(eV)</th>
<th>O$_2$</th>
<th>AsO(OH)$_2$</th>
<th>AsO(OH)$_3$</th>
<th>AsO$_4$(OH)$_2$</th>
<th>AsO$_4$(OH)$_2$</th>
<th>AsO$_3$(OH)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE(kJ/mol)</td>
<td>107.679</td>
<td>199.438</td>
<td>280.442</td>
<td>445.769</td>
<td>231.955</td>
<td>321.619</td>
<td>293.899</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>As(III)</th>
<th>As(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>AsO(OH)$_2$</td>
</tr>
<tr>
<td>1.116</td>
<td>2.067</td>
</tr>
</tbody>
</table>
Fe₃O₄(001) / As(III)

- Adsorption energy:

\[E_{ads} = E_{Surf} + E_{Mol} - E_{Total} \]

- \(E_{ads} = 2.07 \) eV.

<table>
<thead>
<tr>
<th></th>
<th>d (angs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(O – Fe)</td>
<td>2.21</td>
</tr>
<tr>
<td>d(As – O)</td>
<td>1.9</td>
</tr>
<tr>
<td>d(As - Fe)</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Fe$_3$O$_4$(001)/ As(V)

- Adsorption energy: 2.4 eV.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d(O – Fe)</td>
<td>2.09</td>
</tr>
<tr>
<td>d(As – O)</td>
<td>1.71</td>
</tr>
<tr>
<td>d(As - Fe)</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Bandstructure of Fe$_3$O$_4$(001) H$_2$AsO$_4$
Conclusions and perspectives

- FeCu particles obtained by chemical reduction are suitable for removal of water contaminants. Morphology and concentration are crucial in the removal process.

- Molecular dynamics simulations on bimetallic particles show the size and concentration effects on the morphology of bimetallic nanoparticles.

- The optimal condition of nanoparticles for water remediation is the bimetallic Core-Shell structure.

- DFT calculations show bond formation between iron oxide surfaces and As(III) and As(V) complexes, where As(V) presents the higher adsorption energy.

- Future Work: Competition between pollutants (As, Pb, Al)
Acknowledgments

• CONICYT-CHILE, Inserción en la Academia (79090022)
• Basal Funding-CHILE FB0807
• USACH DICYT 041931BR

Collaborators

Nicolas Arancibia-Miranda (CEDENNA, USACH, Chile)
Javier Rojas Nuñez (CEDENNA, Chile)
Dora Altbir (CEDENNA, USACH, Chile)
Pamela Sepulveda (CEDENNA, Chile)
Rafael Gonzalez, U. Mayor, CEDENNA)
Alejandra García (CIMAV, Monterrey, México)
Aldo H. Romero (West Virginia, USA)
Eduardo Bringa (U. Mendoza, Argentina)