Learning with Graph Kernels in the Chemical Universe

Yu-Hang Tang

Luis W. Alvarez Postdoctoral Fellow in Computing Sciences
Computational Research Division
Lawrence Berkeley National Laboratory
Contents

1. Active learning of molecular properties
2. Graph kernel as similarity metric for molecules
3. Application to atomization energy prediction
4. The GraphDot package
5. Summary
Predicting Molecular Properties

› Many molecular properties are functions of their structure
 › Energy/force
 › Chromatography
 › Reactivity

› But experimentation/computation to acquire the properties can be expensive
 › Quantum mechanical computations
 › Large amount of sampling
 › Experiment setup

› Plus, the search space for chemical elements are combinatorially large

Need for ML algorithm that can not only learn from data, but also can guide data acquisition
Gaussian process regression primer

- Conditional distributions of a multivariate normal: given three unit Gaussian random variables A, B, and C, and their covariance matrix Σ, can we infer the value of C if A and B is known?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>0.9</td>
<td>0.8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Given</th>
<th>Observe</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=2</td>
<td>Cov[A, C]=0.9</td>
<td>C should be close to 2</td>
<td></td>
</tr>
<tr>
<td>B=3</td>
<td>Cov[B, C]=0.8</td>
<td>C should also be close to 3</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: C is probably somewhere between 2 and 3

- The above inference have a closed-form solution

$$\mu[C] = \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix}^T \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \approx 2.733$$

$$\text{Var}[C] = 1 - \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix}^T \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix} \approx 0.027$$

With 95% confidence:

$$C = 2.733 \pm 0.054$$
Gaussian process regression (GPR) for supervised learning

Given a few sample points (i.e. training data) from a hidden function, can GPR infer what the function is?

Yes, assuming covariance is a function of distance, e.g. \(K(x_1, x_2) = \exp \left(-\frac{1}{2} \frac{(x_1 - x_2)^2}{\sigma^2} \right) \)
Active learning of potential energy curve using GPR

- Next training point decided on-the-fly, guided by GP’s predictive uncertainty
Active learning of potential energy curve using GPR

- Next training point decided on-the-fly, guided by GP’s predictive uncertainty
Active learning of potential energy curve using GPR

- Next training point decided on-the-fly, guided by GP’s predictive uncertainty
Active learning of potential energy curve using GPR

- Next training point decided on-the-fly, guided by GP’s predictive uncertainty
Active learning of potential energy curve using GPR

- Next training point decided on-the-fly, guided by GP’s predictive uncertainty

![Graph showing potential energy curve with eV on the y-axis and Å on the x-axis.]
The previous example was cheating

› Carried out as a 1D GPR on the real line

› Problem

 How to define **covariance functions between molecules**?

› Hint: it is our belief that **similar molecules have covariate properties**

 › covariance is statistician’s way for describing ‘similarity’ between random variables

› Need for **similarity quantification between atomistic configurations**
Similarity functions between molecules: challenges

- Variable degrees of freedom
- Discrete label/topology space
Similarity functions between molecules: challenges

› Smoothness
Similarity functions between molecules: challenges

› Symmetry adaptation
Similarity comparison via feature vectors: detour?

- Well-known fundamental similarity functions
 - The **cosine similarity**: based on angle (similar if pointing in the same direction)
 - Square exponential RBF: based on L_2 distance (similar if close in space)

- For molecules: apply the cosine/Gaussian similarity function on a molecular feature vector
 - Eigenspectrum of coulomb matrix: Rupp et al. PRL. 2012
 - SOAP: spherical harmonics expansion of density. Bartók et al. PRB. 2013
 - Bispectrum of mass density. Bartók et al. PRL. 2010
 - DECAF: optimal quadrature expansion of density + canonical alignment
 - J Chem Phys 2018 Editors’ Choice
 - and hundreds more...
Similarity between structured data

- Molecules are intrinsically graphs with
 - Variable numbers of nodes and edges
 - Non-sequential connectivity between components

- Explicit feature vectors might be a detour, since eventually only a single number (the covariance) is needed.

- The marginalized graph kernel is specifically designed to overcome the above issues
 - Construct implicit feature space formed by joint random walks on the graphs
 - Built-in symmetry invariance
 - Scales to arbitrary number of atom/bond types

Gaussian Process Regression using the Marginalized Graph Kernel

https://doi.org/10.1063/1.5078640
Convert 3D molecular geometry to an undirected, weighted graph

› Atoms as vertices

› Use an adjacency rule to create edges with weights decaying by distance

 › For example, a Gaussian adjacency rule

 \[
 w_{ij} = \exp \left[-\frac{1}{2} \frac{(r_i - r_j)^2}{(\lambda b_{ij})^2} \right]
 \]

 › \(b_{ij} \) is the average bond length between elements

 › \(\lambda \) is a linear scaling factor
Formation of Product Graph

- A product graph is a graph where
 - a vertex is a pair of vertices, each from a smaller graph
 - an edge exists if the two pairs of constituting vertices are both connected in the smaller graph
Perform random walk on the graph, and sum over path similarity

- Jump probability proportional to edge weight
- Stopping probability determines average path length
- Sum over all possible paths of potentially infinite length
Marginalized graph kernel: computation

\[
K(G, G') = \sum_{l=1}^{\infty} \sum_{h} \sum_{h'} p_s(h_1)p'_s(h'_1)K_v(v_{h_1}, v'_{h'_1}) \prod_{i=2}^{l} p_t(h_i|h_{i-1})p_q(h_i) \prod_{j=2}^{l} p'_t(h'_j|h'_{j-1})p'_q(h'_j) \prod_{k=2}^{l} K_e(e_{h_{k-1}h_k}, e'_{h'_{k-1}h'_k})K_v(v_{h_k}, v'_{h'_k})
\]

A (slightly) more friendly version of the kernel is

\[
K(G, G') = s \times \cdot R_\infty,
\]

where \(R_\infty\) can be solved from

\[
[D_\times V_\times^{-1} - A_\times \odot E_\times] R_\infty = D_\times q_\times.
\]

\(D_\times\): vertex degree matrix
\(V_\times\): vertex label similarity matrix
\(A_\times\): adjacency matrix
\(E_\times\): edge similarity matrix
\(q_\times\): stopping probability
GraphDot: graph kernel made easy

Repository: https://gitlab.com/yhtang/graphdot

PyPI: https://pypi.org/project/graphdot/

Documentation: https://graphdot.readthedocs.io/en/latest/

› Fully featured: **for and beyond molecules!**
 › Weighted graphs with both nodes and edges labeled
 › Arbitrary attributes and custom base similarity kernels

› **GPU-accelerated**
 › Just-in-time code generation and compilation
 › 100x speedup compared to existing CPU packages such as GraKeL and graphkernels

› **Interoperable** with ASE, NetworkX, pymatgen
 › Scikit-learn compatible python interface
Example & benchmark

- QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms
 - From scratch training time: \(N = 1000 \): 10 s training, 0.018 s/sample predicting, \(N = 2000 \): 40 s training, 0.034 s/sample predicting

- Supervised learning: use predictive error to determine the next sample

- Unsupervised active learning: use predictive variance
Summary

› Active learning using GPR can be powerful for predicting molecular properties

› The marginalized graph kernel is an ideal covariance function for Gaussian process regression of molecular energy

› The GraphDot library is a high-performance and easy-to-use python package for graph kernel computations

Thank you!

Acknowledgment

› LBNL LDRD Project “Active Learning of Ab Initio Force Fields with Applications to Large-Scale Simulations of Materials and Biophysical Systems”

› Work also supported in part by the Applied Mathematics program of the DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231, and in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
Marginalized graph kernel: application

- The elements of \mathbf{R}_∞ can be interpreted as an **atom-wise similarity matrix**.

- The **sum of the elements** of \mathbf{R}_∞, before normalization, defines a kernel that allows **automatic scaling** when predicting extensive variables.
Example & benchmark

› QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms

› From scratch training time: $N = 1000$: 10 s training, 0.018 s/sample predicting, $N = 2000$: 40 s training, 0.034 s/sample predicting