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Abstract

The application of coarse grained (CG) models are becoming more common to model systems unattainable by
molecular dynamics. The effective potentials that are used to govern the CG interactions are state-point
dependent, which limits the transferability of models to state points at which they were not parameterized.
Force-matching and pressure-matching were employed to determine the effective potentials across the glass
transition temperature of OTP. The pair potentials become increasingly attractive with increasing temperature at
constant pressure, however at the constant liquid density, the pair potentials become increasingly repulsive with
increasing temperature. At constant glass density, the pair potentials do not display monotonic trends with
temperature and thus do not behave as a molecular liquid.

Introduction

Coarse grained models that utilize a potential of mean force (PMF) parameterized from an atomistic model often
struggle with both a transferability and representability problem. The transferability problem appears when a
model parameterized at a given state point does not be reflect the effective potential at a different state point.?
Previous studies have investigated both the density and temperature dependence of CG effective potentials in
molecular liquids, revealing monotonic trends with temperature and density. More interestingly, the density
dependence has been shown to dominate over the temperature dependence.?

OTP is a small glass forming molecule that has been studied intensely in
L S attempts to better understand both the dynamic and structural

| }-v \4\ | S.r‘i-(u ’ anomalies that occur at a glass transition.! Typically, simulation models
L ) ol ‘u\ j of glassy state points struggle to obtain the necessary statistics to be
(oA o= confident in calculations. Structure based coarse grained models can

; : ""U,Q‘ provide a valuable tool to overcome the problems with traditional MD

P ¢ simulations, however the parameterization of a model that can

“’"\‘& reproduce both the liquid and glassy state is non trivial. A better

understanding in how the effective potential across the glass transition
varies will help build models that can help uncover the intricate nature of
a glass transition. The goal of this study is to determine the temperature
and density dependence of the PMF across the glass transition of OTP.

Figure 1: Ortho terphenyl (OTP) in
atomistic (ball and stick) representation.

Atomistic Simulations

N S 1 1 1
g 1.5%10 ] l | . | l o ] I I I
1100 |~ —
= oo’ © o — ®
% i _ l _
N’
o 4 | _ N
3 5.0x10 o) Tg 1080 X ® X —
= i © 1 o
8 0.0 ] | 1 | ] | _ — -
o N——"
= —6.O><1O4 J | | | T | ;P 1060 — —
Y v
= O =
= = - O - -
3 O O -
S -6.5%x10" [ 7 10407~ -
z . e > i ®
% \ 4 I ¢ I I I I I
4 ] ] ] ] ] I
— -1.0x10,5 300 350 200 192950 300 350 400
Temperature (K) Temperature (K)
Figure 2: Average intermolecular @ 1033 (kg/m’) Figure 3: State points for atomistic simulations. Black
potential vs temperature. The solid 1079 (kg/m’) circles signify state points simulated in the NPT
symbols represent atomistic simulations @ 1097 (kg/m’) ensemble, while red crosses signify state points
and the hollow symbols represent the simulated in the NVT ensemble..
corresponding CG simulation.
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Figure 4: Mean square displacement vs. time on a  Figure 5: Density vs. temperature. The dashed lines
logarithmic scale represent linear fits to the two density regimes and

the dotted vertical lines represent the calculated glass
transition temperature
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