**Designing Atomistic Simulation Workflows with MedeA®
A Case Study: Viscoelasticity of Glycerol at Ultra-high Frequencies**

Naida Lacevic
Materials Design, Inc.,
nlacevic@materialsdesign.com

Atomistic simulations are increasingly used to complement or enhance experiments

Example: Nanoelectromechanical systems (NEMS) operating in liquid environments are of interest in biology.
- Resonance frequency increase into GHz and THz regime
- Same order of magnitude as atomistic/molecular relaxation processes in liquids such as water and glycerol
- Viscoelasticity becomes important
 - It is challenging to obtain relevant data via experiments
 - E.g., DMA (dynamic mechanical analysis) cannot probe GHz regime
 - Only one experimental study of G' and G'' of glycerol at 25 GHz (shear) and 41.5 GHz (long.) – Nelson et al., JCP
 - Complex technique (TDBS)
 - Fluid structure not available
 - Difficult to gain insights into molecular motion
 - Molecular dynamics simulations offer alternative
 - We examined glycerol, a model simple viscous liquid, under ultra-high frequency shear and longitudinal deformation.
 - Many simulations needed to sweep temperature and frequency parameter space.

Tools in MedeA® automate complex workflows and ease mundane tasks of initial configuration construction

Model construction and equilibration/production run protocols

MedeA® Forcefields Module automatically assigns ff

MedeA Molecular Builder and MedeA® Amorphous Materials Builder are used for glycerol model constructions

Independent configurations created with MedeA® Amorphous Materials Builder are saved in structure list and ready for equilibration runs

Tools in MedeA® automate complex workflows and ease mundane tasks of initial configuration construction

A Typical Workflow

- Retrieving, viewing, and editing structures
- Selecting methods and programs
- Setting up computational parameters
- Performing calculations
- Analyzing results
- Storing results

Results and comparison with experiments

Schematics of longitudinal and shear deformations

Impose strain amplitude ϵ_0 and f:

$$\epsilon(t) = \epsilon_0 \sin(2\pi ft + \delta)$$

Compute stress:

$$\sigma(t) = \sigma_0 \sin(2\pi ft + \delta)$$

σ_0 and δ are computed as a discrete Fourier transform (DFT) of stress magnitude and phase.

$$M'' = \frac{\sigma_0 \sin \delta}{\epsilon_0}$$

The shear modulus, M'', is calculated in a similar manner.

Summary

- High-throughput and high-fidelity modeling enabled by MedeA® provides guidance to screen large numbers of design options for materials before committing to experiments.
- MD is an effective tool for predicting the viscoelastic properties of simple liquids at ultra-high frequencies.

References

By Naida Lacevic, Ph.D.
Materials Design, Inc., Angel Fire, New Mexico, USA
Materials Design, Inc., is a registered trademark of Materials Design, Inc., Angel Fire, New Mexico, USA.