
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. SAND2017-8029 C

Accelerating	LAMMPS	Performance
Stan	Moore

2017	LAMMPS	Workshop	and	Symposium
Breakout	session:	Acceleration	Packages

Albuquerque,	NM



LAMMPS	Resources	for	Performance	Acceleration

§ Hardware	support
§ CPU	including	OpenMP
§ GPU	via	Cuda
§ KNL	via	OpenMP

§ Website:	Benchmarking	page	(discussed	in	this	session)
§ input	files,	Makefiles,	run commands,	log	files,	plots	&	tables

§ Distro
§ bench	directory

§ Manual
§ Section	5	=	Accelerating	LAMMPS	performance
§ Section	5.3.1	=	GPU	package
§ Section	5.3.2	=	USER-INTEL	package
§ Section	5.3.3	=	KOKKOS	package
§ Section	5.3.4	=	USER-OMP	package
§ Section	5.3.5	=	OPT	package
§ Section	8	=	Performance	and	Scalability

2



LAMMPS	Resources	(cont.)

§ Packages
§ GPU,	KOKKOS,	OPT,	USER-INTEL,	USER-OMP

§ Makefiles in	src/MAKE/OPTIONS	dir
§ Makefile.kokkos,	several	variants:	Cuda,	KNL,	OpenMP
§ Makefile.intel,	several	variants:	CPU	and	KNL
§ Makefile.omp

§ Commands
§ balance,	fix	balance,	processors,	run	style	verlet/split

§ Example	dirs
§ balance

3



Outline	of	Topics

§ LAMMPS	accelerator	packages
§ Overview
§ How	and	when	to	use	them

§ New	benchmarking	website
§ Recent	work	to	improve	LAMMPS	performance
§ Other	performance	considerations
§ Discussion

Please	feel	free	to	ask	questions,	give	suggestions,	or	discuss	
during	the	presentation

4



LAMMPS	Accelerator	Packages

§ Modern	HPC	platforms	such	as	multi-core	CPUs,	Xeon	Phis,	
and	GPUs	often	need	to	use	special	code	(e.g.	OpenMP or	
CUDA)	to	allow	LAMMPS	to	perform	well

§ LAMMPS	has	5	accelerator	packages	that	contain	specialized	
code:	
§ OPT
§ USER-OMP
§ USER-INTEL
§ GPU
§ Kokkos

5



OPT	Package

§ Developed	by	James	Fischer	(High	Performance	Technologies),	David	
Richie,	and	Vincent	Natoli (Stone	Ridge	Technologies)

§ Methods	rewritten	in	C++	templated	form	to	reduce	the	overhead	due	to	
if	tests and	other	conditional	code

§ Code	also	vectorizes better	than	the	regular	CPU	version
§ Contains	9	pair	styles:

§ pair_eam_alloy
§ pair_eam_fs
§ pair_eam
§ pair_lj_charmm_coul_long
§ pair_lj_cut_coul_long
§ pair_lj_cut
§ pair_lj_cut_tip4p_long
§ pair_lj_long_coul_long
§ pair_morse

6



Compiling	and	Running	OPT	Package

§ In	src directory,	“make	yes-opt”
§ Compile	LAMMPS
§ Run	with	8	MPI:	“mpiexec -np	8	./lmp_exe -in	in.lj -sf	opt”
§ -sf	opt	is	the	suffix style:	automatically	appends	/opt	onto	

anything	it	can
§ For	example,	“pair_style lj/cut”	becomes	“pair_style

lj/cut/opt”

7



USER-OMP	Package

§ Developed	by	Axel	Kohlmeyer	(Temple	U)
§ Uses	OpenMP to	enable	multithreading	on	CPUs	or	Xeon	Phis
§ Extensive	LAMMPS	coverage	(108	pair	styles,	30	fixes,	molecular	topology	

bonds,	angles,	etc.,	PPPM,	Verlet &	rRESPA)
§ Best	for	a	small	number	of	threads	(2-4)
§ MPI	parallelization	in	LAMMPS	is	almost	always	more	effective	than	

OpenMP in	USER-OMP	on	CPUs
§ When	running	with	MPI	across	multi-core	nodes,	MPI	often	suffers	from	

communication	bottlenecks	and	using	MPI+OpenMP per	node	can	be	
faster

§ The	more	nodes	per	job	and	the	more	cores	per	node,	the	more	
pronounced	the	bottleneck	and	the	larger	the	benefit	from	MPI+OpenMP

8



Compiling	and	Running	USER-OMP	Package

§ In	src directory,	“make	yes-user-omp”
§ Add	-fopenmp to	the	Makefile
§ Compile	LAMMPS
§ Run	with	2	MPI	and	2	OpenMP threads:	“mpiexec -np	2 -v	

OMP_NUM_THREADS=2	./lmp_exe -in	in.lj -sf	omp”

9



USER-INTEL	Package

§ Developed	by	Mike	Brown	(Intel)
§ Allows	code	to	vectorize and	run	well	on	both	Intel	CPUs	(with	or	without	

threading)	and	on	Xeon	Phis
§ Can	also	be	used	in	conjunction	with	the	USER-OMP package
§ Supports	11	pair	styles,	5	fixes,	some	bonded	styles,	PPPM
§ Supports	single,	double,	and	mixed	precision	modes

10



Compiling	and	Running	USER-INTEL	Package

§ Need	to	use	a	recent	version	of	the	Intel	compiler
§ Use	a	Makefile in	/src/MAKE/OPTIONS/	such	as	

Makefile.intel_cpu_openmpi
§ In	/src “make	yes-user-intel”	and	“make	yes-user-omp”
§ Compile	LAMMPS
§ To	run	using	2	MPI	and	2	threads	on	a	Intel	CPU:	“mpiexec -np	

2	-v	OMP_NUM_THREADS=2	./lmp_exe -in	in.lj -pk intel	0	
omp 2	mode	mixed	-sf	intel”

§ -pk is	the	package	command

11



GPU	Package

§ Developed	by	Mike	Brown	and	Trung Nguyen	(ORNL)
§ Designed	for	one	or	more	GPUs	coupled	to	many	CPUs
§ Pair	runs	on	GPU,	fixes/bonds/computes	run	on	CPU
§ Atom-based	data	(e.g.	coordinates,	forces)	move	back	and	forth	between	

the	CPU(s)	and	GPU	every	timestep
§ Supports	49	pair	styles,	PPPM
§ Asynchronous	force	computations	can	be	performed	simultaneously	on	

the	CPU(s)	and	GPU.
§ Allows	for	GPU	computations	to	be	performed	in	single,	double	precision,	

or	mixed	precision	mode
§ Provides	NVIDIA	and	more	general	OpenCL	support

12



Compiling	and	Running	GPU	Package

§ First	compile	GPU	library	in	lib/gpu (make	-f	
Makefile.linux.mixed)

§ In	src directory,	“make	yes-gpu”
§ Compile	LAMMPS
§ Run	with	16	MPI	and	4	GPUs:	“mpiexec -np	16	./lmp_exe -in	

in.lj -sf	gpu -pk gpu 4”

13



Kokkos

§ Abstraction	layer	between	programmer	and	next-generation	platforms
§ Allows	the	same	C++	code	to	run	on	multiple	hardwares (GPU,	Xeon	Phi,	

etc.)
§ Core	developers	are	Carter	Edwards	and	Christian	Trott	(Sandia)
§ Kokkos consists	of	two	main	parts:

1. Parallel	dispatch—threaded	kernels	are	launched	and	mapped	onto	backend	
languages	such	as	CUDA	or	OpenMP

2. Kokkos views—polymorphic	memory	layouts	that	can	be	optimized	for	a	
specific	hardware

§ Used	on	top	of	existing	MPI	parallelization	(MPI	+	X)
§ Open-source,	can	be	downloaded	at	https://github.com/kokkos/kokkos	

14



Kokkos Package

§ Developed	by	Christian	Trott,	Stan	Moore,	Ray	Shan	(Sandia)	
and	others

§ Supports	OpenMP and	GPUs
§ Scales	to	many	OpenMP threads
§ Designed	for	one-to-one	GPU	to	CPU	ratio
§ Designed	so	that	everything	(pair,	fixes,	computes,	etc.)	runs	

on	the	GPU,	minimal	data	transfer	from	GPU	to	CPU
§ Currently	only	double	precision	is	supported
§ Supports	only	newer	NVIDIA	GPUs

15



LAMMPS	Kokkos Package
§ 6	atom	styles:	angle,	atomic,	bond,	charge,	full,	molecular	
§ 34	pair	styles: buck/coul/cut,	buck/coul/long,	buck,	coul/cut,	coul/debye,	

coul/dsf,	coul/long,	coul/wolf,	eam/alloy,	eam/fs,	eam,	
lj/charmm/coul/charmm/implicit,	lj/charmm/coul/charmm,	
lj/charmm/coul/long,	lj/class2/coul/cut,	lj/class2/coul/long,	lj/class2,	
lj/cut/coul/cut,	lj/cut/coul/debye,	lj/cut/coul/dsf,	lj/cut/coul/long,	lj/cut,	
lj/expand,	lj/gromacs/coul/gromacs,	lj/gromacs,	lj/sdk,	morse,	sw,	reax/c,	
table,	tersoff,	tersoff/mod,	tersoff/zbl,	vashishta

§ 12	fix	styles:	deform,	langevin,	momentum,	nph,	npt,	nve,	nvt,	qeq/reax,	
reaxc/bonds,	reaxc/species,	setforce,	wall/reflect

§ 1	compute	style: temp
§ 2	bond	styles: fene,	harmonic
§ 2	angle	styles: charmm,	harmonic
§ 2	dihedral	styles:	charmm,	opls
§ 1	improper	style:	harmonic
§ 1	kspace style:	pppm

16



Kokkos Package	Options

§ Using	a	half	neighbor	list	with	netwon flag	on	is	usually	better	
for	CPUs	but	requires	atomics	when	using	more	than	one	
thread

§ For	pairwise	potentials,	using	a	full	neighbor	list	doubles	the	
computation	but	doesn’t	require	thread	atomics	and	can	
reduce	communication	(often	better	for	GPU	and	sometimes	
Xeon	Phi)

§ Using	threaded	communication	(packing/unpacking	buffers)	is	
faster	on	the	GPU	since	it	avoids	host/device	memory	transfer	
but	can	be	slower	on	the	CPU	or	Xeon	Phi

§ These	differences	are	implemented	as	options	in	the	LAMMPS	
Kokkos package

17



Compiling	and	Running	Kokkos Package

§ Need	c++11	compiler	(gcc 4.7.2	or	higher,	intel	14.0	or	higher,	
CUDA	6.5	or	higher)

§ In	/src directory,	“make	yes-kokkos”
§ Build	with	/src/MAKE/OPTIONS/Makefile.kokkos_omp or	

Makefile.kokkos_cuda_openmpi
§ Run	with	4	MPI	and	4	GPUs:	“mpiexec -np	4	./lmp_exe -in	in.lj

-k	on	g	4	-sf	kk”
§ Run	with	4	OpenMP threads:	“./lmp_exe -in	in.lj -k	on	t	4	-sf	

kk -pk kokkos newton	on	neigh	half”
§ Kokkos package	documentation	will	be	updated	soon

18



Comparison	of	Kokkos to	Other	LAMMPS	
Packages

§ USER-OMP
§ Kokkos uses	atomics	or	a	full	neighbor	list	to	avoid	write	conflicts, while	USER-

OMP	uses	memory	duplication
§ USER-OMP	is	typically	faster	for	a	few	number	of	threads,	while	Kokkos is	

more	thread-scalable
§ GPU	package

§ GPU	package	only	runs	the	pair	style	and	a	few	other	computations	on	the	
GPU	and	works	best	when	coupled	with	many	CPUs

§ Kokkos package	tries	to	run	everything	(including	fixes,	bonds,	etc.)	on	the	
GPU

§ USER-INTEL
§ USER-INTEL	supports	single,	double	and	mixed	precision,	Kokkos currently	

only	supports	double	precision
§ USER-INTEL	vectorizes better

19



Accelerator	Package	Rules	of	Thumb

CPUs	and	Xeon	Phis
§ Use	USER-INTEL	if	available
§ Otherwise	if	you	are	using	a	few	threads,	use	USER-OMP	or	

OPT,	otherwise	use	Kokkos serial	or	Kokkos
GPUs
§ If	all/most	of	the	fix	styles	are	in	the	Kokkos package,	use	the	

Kokkos package
§ If	many	fixes	are	not	yet	in	the	Kokkos package,	use	the	GPU	

package
§ If	you	want	to	use	many	more	CPUs	than	GPUs,	use	the	GPU	

package
§ For	single	or	mixed	precision,	use	the	GPU	package

20



New	Benchmark	Website

§ Very	non-trivial	to	get	optimal	performance	on	modern	HPC	
platforms

§ Current	LAMMPS	benchmarking	page	is	outdated
§ New	LAMMPS	benchmarking	website	will	show	performance	

plots	for	different	accelerator	packages	on	different	hardware
§ Will	also	include	links	to:

§ Tables	of	time	for	each	run
§ Makefiles used	for	compiling	LAMMPS
§ List	of	modules	loaded
§ Exact	MPI	run	command	used,	along	with	affinity	settings
§ LAMMPS	logfiles for	each	run

21



Benchmark	Problems

§ Lennard-Jones =	atomic	fluid	with	Lennard-Jones	potential	
§ EAM =	metallic	solid	with	EAM	potential	
§ Tersoff =	semiconductor	solid	with	Tersoff potential	
§ Chain =	bead-spring	polymer	melt	of	100-mer	chains	
§ Granular =	chute	flow	of	spherical	granular	particles	
§ Still	to	be	added:	Rhodopsin (solvated	protein	in	bilayer),	

ReaxFF,	GayBerne

22



Accelerator	Packages	used	for	Benchmarks

§ For	acceleration	on	a	CPU/Intel	KNL:	
§ CPU	=	reference	implementation,	no	package,	no	acceleration	(CPU)	
§ OPT	package	with	generic	optimizations	for	CPUs	(OPT)	
§ USER-OMP	package	with	OpenMP support	(OMP)	
§ USER-INTEL	package	with	CPU	and	precision	options	(Intel/CPU)	
§ KOKKOS	package	with	OMP	option	for	OpenMP (Kokkos/OMP)	
§ KOKKOS	package	with	serial	option	(Kokkos/serial)	

§ For	acceleration	on	an	NVIDIA	GPU:	
§ GPU	package,	with	precision	options	(GPU)	
§ KOKKOS	package	with	CUDA	option	(Kokkos/Cuda)	

23



Benchmark	Machines

§ chama =	Intel	SandyBridge CPUs	
§ 1232	nodes
§ One	node	=	dual	Sandy	Bridge:2S:8C	@	2.6	GHz,	16	cores,	no	

hyperthreading
§ interconnect	=	Qlogic Infiniband 4x	QDR,	fat	tree

§ serrano =	Intel	Broadwell	CPUs	
§ 1122	nodes	
§ one	node	=	dual	Broadwell	2.1	GHz	CPU	E5-2695,	36	cores	+	2x	

hyperthreading
§ interconnect	=	Omni-Path

24



Benchmark	Machines

§ mutrino =	Intel	Haswell	CPUs	and	Intel	KNLs	
§ ~100	CPU	nodes	

§ one	node	=	dual	Haswell	2.3	GHz	CPU,	32	cores	+	2x	hyperthreading
§ ~100	KNL	nodes	

§ node	=	single	Knight's	Landing	processor,	64	cores	+	4x	hyperthreading
§ interconnect	=	Cray	Aries	Dragonfly	

25



Benchmark	Machines

§ ride80 =	IBM	Power8	CPUs	and	NVIDIA	K80	GPUs	
§ 11	nodes	
§ one	node	=	dual	Power8	3.42	GHz	CPU	(Firestone),	16	cores	+	8x	

hyperthreading
§ each	node	has	2	Tesla	K80	GPUs	(each	K80	is	"dual"	with	2	internal	

GPUs)	
§ interconnect	=	Infiniband

§ ride100 =	IBM	Power8	CPUs	and	NVIDIA	P100	GPUs	
§ 8	nodes	
§ one	node	=	dual	Power8	3.42	GHz	CPU	(Garrison),	16	cores	+	8x	

hyperthreading
§ each	node	has	4	Pascal	P100	GPUs	
§ interconnect	=	Infiniband

26



Parameter	Sweep

§ Don’t	know	optimal	number	of	MPI	tasks	vs	OpenMP threads	
or	number	of	hyperthreads to	use	a	priori

§ For	GPU	package,	don’t	know	optimal	number	of	CPUs	per	
GPU

§ Use	a	parameter	sweep	to	find	optimal	settings	for	the	
different	packages

§ Only	best	results	for	each	package	included	on	the	website

27



Types	of	Runs

§ Fixed	number	of	timesteps (i.e.	100)
§ For	cheap	potentials	like	LJ,	run	may	be	too	short,	which	leads	to	high	

variance	in	the	results
§ For	expensive	potentials	or	large	number	of	atoms,	run	may	take	a	

long	time

§ Fixed	time	(i.e.	30	seconds)
§ Use	fix	halt	to	set	an	approximate	time	limit
§ Can	use	fixed	number	of	timesteps for	the	first	parameter	sweep	and	

then	refine	results	with	fixed	time

28



Types	of	Scaling

§ Single	core
§ Single	node
§ Multi-node	strong	scaling	up	to	64	nodes	(fixed	problem	size)
§ Multi-node	weak	scaling	up	to	64	nodes	(fixed	problem	size	

per	node)
§ Also	have	some	data	for	KNL	scaling	up	to	8192	nodes

29



Automation

§ Python	script	is	created	for	every	machine	and	every	model
§ Python	scripts	work	together	to	generate	batch	scripts	for	

each	accelerator	package	and	model
§ Batch	scripts	are	submitted	to	the	job	queue	on	each	machine
§ Python	script	post-process	logfiles to	generate	tables	of	

timings,	finds	“best”	time	in	sweep	of	parameters
§ Python	scripts	generate	plots	from	tables	and	then	generates	

webpage
§ LAMMPS	is	constantly	being	improved;	easy	to	rerun	the	

benchmarks	and	regenerate	the	webpage	with	updated	
results

30



Information	Hierarchy

§ For	each	model	and	scaling	type	(node,	weak	etc.),	show
§ Overall	best	performance	for	each	machine	using	any	accelerator	

package

§ Results	in	this	presentation	are	preliminary	and	may	be	improved 31



Information	Hierarchy

§ For	each	model	and	scaling	type	(node,	weak	etc.),	show
§ Overall	best	performance	for	each	machine	using	any	accelerator	

package

32



Information	Hierarchy

§ For	each	model	and	scaling	type	(node,	weak	etc.),	show
§ Overall	best	performance	for	each	machine	using	any	accelerator	

package

33



Information	Hierarchy

§ For	each	model	and	scaling	type	(node,	weak	etc.),	show
§ Overall	best	performance	for	each	machine	using	any	accelerator	

package

34



Information	Hierarchy

§ For	each	model	and	scaling	type,	also	show
§ Table	of	performance	for	each	machine	using	any	accelerator	package
§ Links	to	LAMMPS	logfiles

35



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

36



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

37



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

38



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

39



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

40



Information	Hierarchy

§ For	each	machine,	model,	and	scaling	type,	show
§ Performance	for	each	accelerator	package	(best	out	of	parameter	

sweep)

41



Information	Hierarchy	(cont.)

§ For	each	machine,	model,	and	scaling	type,	also	show
§ Table	of	performance	for	each	accelerator	package	(best	out	of	

parameter	sweep)

42



Recent	Performance	Work

§ USER-INTEL	added	full	neighbor	list	with	newton	off,	can	be	
better	for	simple	pair-wise	potentials	on	Xeon	Phi

§ Added	“short”	neighbor	list	to	CPU,	OpenMP,	Kokkos and	
GPU	(not	yet	released)	many-body	potentials	(sw,	tersoff,	and	
vashishta)

§ KOKKOS	package	improved	EAM	and	ReaxFF performance	on	
GPUs

§ USER-OMP	added	multithreaded	ReaxFF

43



ReaxFF

§ 4	versions	in	LAMMPS:	
§ USER-REAXC
§ Fortran
§ KOKKOS
§ USER-OMP

§ KOKKOS	version	more	memory	robust,	should	be	used	with	
GCMC

§ KOKKOS	serial	version	faster	than	USER-REAXC,	at	least	in	
some	cases

§ KOKKOS	version	can	run	on	NVIDIA	GPUs
§ USER-OMP	version	brand	new,	probably	better	for	OpenMP

on	Xeon	Phi/CPU	(need	to	benchmark	performance)
44



Performance	Regression	Testing

§ Currently	have	automated	“code	correctness”	regression	
testing	for	LAMMPS

§ But	no	performance	regression	tests
§ Changes	to	the	code	could	slow	down	performance	without	

developers	knowledge
§ Could	add	automated	performance	regression	tests

45



Long-Range	Electrostatics

§ Truncation	doesn’t	work	well	for	charged	systems	due	to	
long-ranged	nature	of	Coulombic	interactions

§ Use	Kspace style	to	add	long-range	electrostatics:
§ PPPM—usually	fastest,	uses	FFTs
§ Ewald—potentially	most	accurate,	but	slow	for	large	systems
§ MSM—multigrid	method	that	also	works	for	non-periodic	systems

§ Usually	specify	a	relative	accuracy	(1e-4	or	1e-5	typically	
used)

§ Example	syntax	(for	periodic	systems):	kspace_style pppm
1.0e-4

§ Use	pair_style *coul/long	such	as	lj/cut/coul/long

46



Accelerating	LRE

§ 2-FFT	PPPM	(kspace_modify diff	ad)
§ Staggered	PPPM
§ Single	vs	double	precision	PPPM
§ Partial	charge	PPPM
§ Verlet/split	run	style--can	overlap	pair	computation	with	

Kspace

47



Other	Performance	Considerations

§ Processor	command	for	MPI	grid	layout,	can	map	to	numa
regions

§ Load-balancing
§ balance	command
§ fix	balance

§ Affinity	is	important	and	complicated,	see	examples	on	new	
benchmark	website

48



Questions?
Discussion/Suggestions?

49


