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Mission need for Leadership Computing

Leadership computing capability is required for scientists to tackle the highest-
resolution, multi-scale/multi-physics simulations of greatest interest and impact
to both science and the nation.

For scientific grand challenges, the Leadership Computing Facilities
provide capability computing that is 10-100X greater than other
computational centers. LCF focus is on big jobs that use a substantial
fraction of the systems resources.

Leadership Computing research is mission critical to inform policy decisions
and advance innovation in far reaching topics such as:

* energy assurance

« ecological sustainability “We will respond to the

threat of climate change,
knowing that the failure to
do so would betray our
children and future
generations.” — President
Obama 1/21/2013

 scientific discovery
« global security




e
What is the Leadership Computing Facility?

* Two centers/two architectures to address Projects receive computational resources
diverse and growing computational needs of typically 10-100x greater than generally

the scientific community. available.
* Highly competitive user allocation programs ¢ LCF centers partner with users to enable
(INCITE, ALCC). science & engineering breakthroughs.
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Integrated Services Model

= Science project management
= Assistance with proposals, planning,
reporting

= Collaboration on algorithms and
development

= ALCF point of coordination

= Startup assistance

= User administration assistance
= Job management services

= Technical support

ALCF
Services

= Workshops and seminars
= Customized training programs
= On-line content and user guides = Data analytics

= Educational and outreach programs = Visualization

= Reporting and promotion = Data management services

= Performance engineering
= Application tuning
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The Past - Intrepid

Intrepid - Blue Gene/P system
— 40,960 nodes / 163,840 cores
— 80 TB memory
— Peak flop rate: 0.56 PF
— Linpack flop rate: 0.45 PF

" Challenger & Surveyor (T&D) — BG/P systems
— 1k & 1k nodes /4096 & 4096 cores
— 2TB & 2 TB of memory
— 27.8TF & 27.8 TF peak flop rate

" FEureka — NVidia S-4 cluster
— Primary use: Visualization and data analysis
— 100 nodes / 800 2.0 GHz Xeon cores
— 3.2TB memory
— 200 NVIDIA FX5600 GPUs
— Peak flop rate: 100 TF

= Storage — Data Direct Networks (DDN) storage arrays
— 6+ PB capability, 80 GB/s bandwidth (GPFS and PVFS)
— 14+ PB of archival storage, 10,000 volume tape archive (HPSS)



The Present - Mira

Mira — BG/Q system
— 49,152 nodes / 786,432 cores
— 768 TB of memory
— Peak flop rate: 10 PF
— Linpack flop rate: 8.1 PF

Cetus & Vesta (T&D) - BG/Q systems
— 1K & 2k nodes / 32k & 64k cores
— 16 TB & 32 TB of memory
— 210 TF & 419 TF peak flop rate

Tukey — Nvidia system |
— 100 nodes / 1600 x86 cores/ 200 M2070 GPUs
— 6.4 TB x86 memory / 1.2 TB GPU memory
— Peak flop rate: 220 TF

= Storage

— Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS)
— Home: 1.8 PB raw capacity, 45 GB/s bw (GPFS)
— Storage upgrade planned in 2015



Evolution from P to Q

Design Parameters Difference
Cores / Node 4 16 4x
Hardware Threads I 4 4x
Concurrency / Rack 4,096 65,536 | 6x
Clock Speed (GHz) 0.85 1.6 |.9x
Flop / Clock / Core 4 8 2x
Flop / Node (GF) 13.6 204.8 | 5x
RAM / core (GB) 0.5 I 2x
Mem. BW/Node (GB/sec) 13.6 42.6 3x

Latency (MPI zero-length,

nearest-neighbor node) e AL 5o less
Bisection BW (32 racks) |.39TB/s 13.1TB/s 9.42x
Network 92 TorL.IS * 5D Torus Smaller diameter
Collectives
GFlops/Watt 0.77 2.10 3x
Instruction Set 32 bit PowerPC + 64 bit PowerPC + New vector
DH QPX instructions

Programming Models MPI + OpenMP MPI + OpenMP
Cooling Air Woater



Node/node comparison details

_

Cores / Node

Clock Speed (GHz) 0.85 |.6 |.9%
Flop / Clock / Core 4 8 2X
Flops/core 3.4 GF 12.8 GF 3.8x
Flops/node 13.6 204.8 15.1x
Nodes / Rack 1,024 1,024 | x

Flops / Rack 13.9TF 2I0TF 15.1x



Programming and Running on BG/Q

= MPI
"= Threads: OpenMP, PTHREADS
= QPX intrinsics: vec_Id, vec_add, vec_madd, ....

= Topology interfaces
— E.g. MPIX_* functions

= Run modes: combinations of
— MPI ranks/node ={1,2,4,...,64}
— Threads/node ={1,2,4,...,64}

W(— High-level APIs

Global Arrays
PICH: Openp || Global Arrays.
GASNet




Allocation

High-risk, high-payoff science
that requires LCF-scale

Call

Typical Size

Review
Process

Managed By

Readiness

Availability

INCITE

Programs at the LCFs

ALCC

High-risk, high-payoff science
aligned with DOE mission

resources™
1x/year — (Closes June) 1x/year — (Closes February)
2014 Call Open Now
1-3 years, yearly renewal 1 year
30-40 50M - 500M . 10M - 300+M
. 5-10 projects
projects core-hours/yr. core-hours/yr.
Scientific Computational Scientific Computational
Peer-Review Readiness Peer-Review Readiness
INCITE management . .
& DOE Office of Science

committee (ALCF & OLCF)

. Director’s

Discretionary

Strategic LCF goals

Rolling

3m,bm,1 year

100s of
projects

.5M-10M
core-hours

Strategic impact and
feasibility

LCF management

High

Medium to High

Low to High

Open to all scientific researchers and organizations
Capability > 131,072 cores (16.7% of Mira)




Diversity of INCITE science

Simulating a flow of healthy (red) and
diseased (blue) blood cells with a
Dissipative Particle Dynamics method.

- George Karniadakis, Brown University

Demonstration of high-fidelity capture of
airfoil boundary layer, an example of how
this modeling capability can transform
product development.

- Umesh Paliath, GE Global Research

Provide new insights into the dynamics
of turbulent combustion processes in

internal-combustion engines.
-Jacqueline Chen and Joseph Oefelein,
Sandia National Laboratories

Calculating an improved probabilistic
seismic hazard forecast for California.

- Thomas Jordan,
University of Southern California

High-fidelity simulation of complex
suspension flow for practical rheometry.

Modeling charge carriers in metals and
semiconductors to understand the nature of

these ubiquitous electronic devices.
- Richard Needs, - William George, National Institute of

Standards and Technology

University of Cambridge, UK

Other INCITE research topics

* Glimpse into dark matter e Global climate e Membrane channels e Nano-devices

e Supernovae ignition e Regional earthquakes  Protein folding e Batteries

e Protein structure e Carbon sequestration e Chemical catalyst design e Solar cells

e Creation of biofuels e Turbulent flow e Combustion e Reactor design

* Replicating enzyme functions e Propulsor systems e Algorithm development ® Nuclear structure
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Scientific Support is Collaboration

The ALCF is staffed with a team of computational scientists, expert in their domain,

scalable algorithms and performance engineering.

= Provide a "jump-start” in the use of ALCF resources

= Align the availability of ALCF resources with the needs of the project team

= Collaborate to maximize the value that ALCF can bring to our projects

= Connect the needs of the scientific community with future and current hardware

Two categories of collaboration and contribution to teams using the ALCF:

Tactical/Collaborative

e Short term, fast solutions
*  Compiling, Debugging, System Use
* Targeted problem resolution

* Resolve a specific hard problem like
restructuring 1/0

* Long term collaborations
* Indepth work on a code that be over a

long period of time
* Constrained by staff

Strategic

Training

* Postdocs, students, community
Understand HPC needs for different
communities

Plan for future needs
* Help planning new facilities
* Advise/Participate in long term code
development paths
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Extra Slides on BG/Q hardware



Blue Gene/Q 4. Node Card:

3. Compute card: 32 Compute Cards,

One chip module, Optical Modules, Link Chips; 5D Torus
16 GB DDR3 Memory,

Heat Spreader for H,O Cooling

2. Single Chip Module

1. Chip:
16+2 cores

5b. IO drawer:
810 cards w/16 GB
8 PCle Gen2 x8 slots
3D I/0O torus

7. System:
96 racks, 20PF/s

5a. Midplane:
16 Node Cards

6. Rack: 2 Midplanes



BlueGene/Q Compute Chip

System-on-a-Chip design :

integrates processors,

memory and networking logic into a single chip
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360 mm? Cu-45 technology (SOI)

— ~1.47 B transistors

16 user + 1 service processors
— 16 compute cores
— 17t core for system functions (OS, RAS)
— plus 1 redundant processor
— all processors are symmetric
—L11/D cache = 16kB/16kB
— L1 prefetch engines

Crossbar switch

— Connects cores via L1P to L2 slices
— Aggregate read rate of 409.6 GB/s

Central shared L2 cache
—32 MB eDRAM

— 16 slices

Dual memory controller
— 16 GB external DDR3 memory
—42.6 GB/s bandwidth

Chip-to-chip networking
— Router logic integrated into BQC chip
—DMA, remote put/get, collective operations
—11 network ports

External 10
— PCle Gen2 interface
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BG/Q Core

= In-order execution

= 4-way Simultaneous Multi-Threading

= Dynamic branch prediction

= 32 64 bit integer registers, 32 256 bit FP registers

= Functional Units:
= |U—instructions fetch and decode
= XU - Branch, Integer, Load/Store instructions
= AXU - Floating point instructions
= Standard PowerPC instructions
= QPX 4 wide SIMD
= MMU - memory management (TLB)
= Instruction Issue:
= 2-way concurrent issue 1 XU + 1 AXU
= Agiven thread may only issue 1 instruction per cycle

= Two threads may issue 1 instruction each cycle

Prv U
Thread
Fetch 1%
Sequencer
Ucode Branch
Prediction
ctrl 4
1S
ROM S
y
AXU
Dep/
MMU Isstﬁ’e < {0 Dep( [
i Issue
' —
TLE GPR
Fixed Load/
point | Branch store [
AXU
< w| dERAT
D$
XU r AXU
v L2 Interface
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QPX Overview

=  Unique 4 wide double precision SIMD

instructions extending standard PowerISA with: 26 F
—  Full set of arithmetic functions

—  Load/store instructions 1

—  Permute instructions to reorganize data

= 4 wide FMA instructions allow 8 flops/inst + 41 -
=  FPU operates on: o o

— Standard scale PowerPC FP instructions (slot 0)

— 4 wide SIMD instructions

¥ v

— 2 wide complex arithmetic SIMD arithmetic

=  Standard 64 bit floating point registers are
extended to 256 bits
MADO MAD1

=  Attached to AXU port of A2 core — A2 issues one o
instruction/cycle to AXU

= 6 stage pipeline
= 32B (256 bits) data path to/from L1 cache
=  Compiler can generate QPX instructions

= |ntrinsic functions mapping to QPX instructions
allow easy QPX programming




Inter-Processor Communication

= 5D torus network:

— Virtual cut-through routing with Virtual Channels to separate
system and user messages

— 5D torus achieves high nearest neighbor bandwidth while
increasing bisectional bandwidth and reducing hops

— Allows machine to be partitioned into independent sub
machines. No impact from concurrently running codes.

— Hardware assists for collective & barrier functions over
COMM_WORLD and rectangular sub communicators

— Half rack (midplane) is 4x4x4x4x2 torus

— Last dimension is always 2

= No separate Collectives or Barrier network:
—Single network used for point-to-point, collectives, and barrier
operations

= Nodes have 10 links with 2 GB/s raw bandwidth each

— Bi-directional: send + receive gives 4 GB/s
Network Performance —90% of bandwidth (1.8 GB/s) available to user

= All-to-all: 97% of peak = Additional 11t link for communication to 10 nodes

" Bisection: > 93% of peak = Optical links between midplanes, electrical inside

* Nearest-neighbor: 98% of peak midplane

= Collective: FP reductions at 94.6% of peak = Hardware latency

= On chip per hop latency ~40 ns — Nearest: 80ns

= Allreduce hardware latency on 96k nodes ~ 6.5 us ~ — Farthest: 3us (96-rack 20PF system, 31 hops)

= Barrier hardware latency on 96k nodes ~ 6.3 us
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