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LAMMPS Accelerator Library	



•  Available in LAMMPS as "GPU Package"	


•  Support for many commonly used pair styles	



–  Pair-wise potentials,	


–  Three-body potentials: EAM, Stellinger-Weber,	


–  Particle-Particle Particle-Mesh	



•  Multiple MPI tasks share available Accelerators	


–  Still get parallelization on CPU and compatibility with other LAMMPS 

features	



•  CPU/Accelerator concurrency for force computation 	


•  CUDA and OpenCL compatibility via a generic API (Geryon)	



Brown, Wang, Plimpton, Tharrington, Comput. Phys. Comm., 182, 898-911, 2011	


Brown, Kohlmeyer, Plimpton, Tharrington, Comput. Phys. Comm., 183, 449-459, 2012	


Brown, Yamada, Comput. Phys. Comm., To Appear, 2013	
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ORNL Computing resource	



Jaguar Cray XK6 (2011)	


18,688 nodes:	


•  16-core AMD Opteron 6200	


•  1 NVIDIA Tesla X2090 (Fermi)	


•  32 GB RAM	


Gemini interconnect (75 Gbits/s)	



Titan Cray XK7 (2012)	


18,688 nodes:	


•  16-core AMD Opteron 6274	


•  1 NVIDIA Tesla K20X (Kepler)	


•  32 GB RAM	
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Soft matter systems	



Charged polyelectrolytes	

 Liquid crystal films	

Liquid metallic rings/stripes	



of which the energy scale is on the order of kBT	
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Charged polyelectrolytes	



•  Objectives: 	


–  Structural and dynamic features as a function of the distance 

between two grafted surfaces	


•  Computational challenges:	



–  Long-range solver with sparse charges	


–  Slab geometry; periodicity in z undesirable	



•  Resolutions	


–  Longer cutoff for real-space calculations (GPU) + coarser mesh for 

k-space calculations (CPU): 3x (GPU vs CPU-Only PPPM on 
XK6)	



–  Truncated shifted-force Coulombic potential (lj/cut/coul/dsf) for 
systems of uniformly distributed charges: ~12x (GPU vs CPU-
Only PPPM on XK6)	



Fennel, Gazelter, J. Chem. Phys., 124, 234104, 2006	


Carrillo, Russell, Dobrynin, Langmuir, 27, 14599, 2011	
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Nguyen, Carrillo, Dobrynin, Brown, J. Chem. Theory Comput., 9, 73-83, 2013	



Model:	


-  Polymer chains randomly grafted 

to opposite surfaces	


-  Charges on brush monomers; 

neutralizing counterions freely 
floating	



Simulation: 	


-  NVT (Langevin thermostat)	
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Lessons learned	



•  Shift the computational work to real-space 
calculations by increasing cutoff	


•  Use verlet/split to perform k-space and real-space 

calculations concurrently	


•  Use GPU acceleration to decrease the number of 

MPI tasks performing long-range calculations	


•  Increase the number of threads per atom with the 

real-space cutoff	


•  Enhanced truncation methods are accurate for 

certain systems but need further work to 
characterize charge screening in condensed phase	
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Liquid metallic rings and stripes	



•  Objectives: 	


–  Competition between instability and surface tension 

minimization that leads to breakup or collapse of thin rings and 
stripes on a solid substrate. 	



•  Computational challenges:	


–  Many-body interaction between liquid atoms (modeled by the 

EAM potential)	


•  Resolution	


–  EAM (liquid-liquid) and LJ (solid-liquid) are performed on GPUs	


–  Performance gain: ~3-4x (GPU vs CPU-only on XK7)	



Brown, Nguyen, Fuentes-Cabrera, Fowlkes, Rack, Berger, Bland, Procedia Computer Science, 9, 186, 2012	
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Breakup vs. collapse	



MD vs. continuum hydrodynamic simulations	



Model:	


-  Liquid atoms interact via Cu EAM	


-  Liquid-substrate atoms interact via 

Lennard-Jones 12-6	


-  Substrate atoms are immobile	


Simulation: 	


-  NVT (Nose-Hoover thermostat)	


-  N = ~100K atoms; up to 64 nodes	



Nguyen, Fuentes-Cabrera, Fowlkes, Diez, Gonzalez, Kondic, Rack, Langmuir, 28, 13960, 2012	
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Lessons learned	



•  Performance gain with GPU acceleration for 
EAM is modest because of the short-ranged 
EAM (0.5 nm for Cu) and an additional 
communication for electron density	


•  processors and fix balance are helpful for 

load balancing.	
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Liquid crystal dewetting	



•  Objectives: 	


– Dewetting of liquid crystal films	



•  Computational challenges:	


– Anisotropic interaction between liquid crystal molecules	



•  Resolution	


– Gay-Berne interactions are performed on the GPUs	


– Performance speedup: >7x (GPU vs CPU-only on 

XK7)	



Brown, Nguyen, Fuentes-Cabrera, Fowlkes, Rack, Berger, Bland, Procedia Computer Science, 9, 186, 2012	
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Model:	


-  3:1 LCs interact via Gay-Berne	


-  Spherical substrate atoms are immobile	



Nguyen, Carrillo, Brown, in progress	



Film thickness h(x, y)	



Vandenbrouck, Valignat, Cazabat, Phys. Rev. Lett., 82, 1999	


Experiment: Isotropic films of 5CB LCs dewetting	



Simulation: 	


-  NVT (Nose-Hoover thermostat)	


-  fix ave/spatial	



N = 10-30M LC molecules + ~10M substrate atoms; 400-4900 nodes	
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Lessons learned	



• Optimal number of MPI tasks sharing a GPU is 4 	


• Optimal number of atoms per GPU is ~15-30K	


•  Use LAMMPS enhanced MPI task placement for 

Cartesian grid (via processors grid numa)	


•  Use the CUDA Proxy server on Titan so MPI 

processes can efficiently share the GPU	


– Compile lib/gpu with –DCUDA_PROXY and 'export 

CRAY_CUDA_PROXY=1' on Titan	
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Summary	


•  GPU package can offer 3-7x speedup	


•  Coulombic interactions	


•  Many-body interaction (EAM)	


•  Anisotropic interaction (Gay-Berne) 	



•  Efficiency notes	


•  Shift work load to GPU-accelerated real-space computation	



•  Especially for K-space "Slab" Calculations	


•  GPU acceleration benefit the most with heavy force computation 

(e.g. Gay-Berne, three-body)	


•  Options to probe performance before production runs	



•  Number of atoms per GPU (estimate)	


•  Number of MPI tasks sharing a GPU	


•  Number of threads per atom (based on the number of neighbors per atom)	


•  Neighbor list build related parameters: skin, every/delay (zero dangerous 

builds)	
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New/Coming Features	



•  Support for Multi-Process Service (MPS) on NVIDIA 
Kepler GPUs to use Hyper-Q with MPI	



•  Acceleration for 3-body potentials	


–  Currently available for Stillinger-Weber	


–  mW Water Model (Nature 479, 506–508) simulation is 6.6 

faster for single-node and >5X for production simulations 
being performed on Titan	



–  Deterministic Algorithms on Accelerator (Brown, 
Yamada, CPC, to appear.	



•  Improved support for OpenCL build	


–  Vectorization for LAMMPS routines on Intel/AMD CPUs, 

Integrated Graphics, Discrete Graphics, Intel MIC	





Scientific Computing group, National Center for Computational Sciences, ORNL	



New/Coming Features	



•  Just-In-Time Potentials	


– Specify any equation in the input script	


– Compiled at run-time for the CPU or accelerator	



•  No run-time parsing of equations is required	



•  Automated potential generation for coarse-
grain models	



•  Monte Carlo	


•  Performance Improvements	
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LAMMPS at the OLCF	


•  Molecular Dynamics of Thin Films (Early Science - Nguyen, 

et al.)	


–  First simulations of liquid crystal layers at length and time-scales 

sufficient for investigation of the evolution of spinodal instability	


–  Simulations are using up to half of Titan	



•  Rational Design of Organic Photovoltaics (Early Science - 
Carrillo, et al.)	


–  First simulations of OPV solar cells at experimental length/time scales	


–  Collaboration between computational scientists, theorists, and 

experimentalists at ORNL and UT to improve the efficiency of solar 
devices	



•  Accelerated Modeling of Non-icing Surfaces for Cold 
Climate Wind Turbines (ALCC – Yamada, et al.)	


–  GE-Global Research - passive coatings for ice mitigation	


–  Large-scale simulation of water with 3-body potentials	



•  You?	
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Getting Access to Titan	


•  INCITE - Novel Computational Impact on 

Theory and Experiment Program	


–  Typically awards millions of processor-hours per 

project	


–  Addresses grand challenges in science and engineering	


–  There is an annual call for INCITE proposals and 

awards are made on an annual basis	


–  http://www.doeleadershipcomputing.org	



•  ALCC – The ASCR Leadership Computing 
Challenge	


–  Emphasis on high-risk, high-payoff simulations	


–  DOE energy mission areas	



•  advancing the clean energy agenda	


•  understanding the Earth’s climate, …	



–  open to national labs, academia, industry	


–  http://science.energy.gov/ascr/facilities/alcc/	



•  DD – Director’s Discretion projects	


–  Dedicated to leadership computing preparation, 

INCITE and ALCC scaling, and application performance 
to maximize scientific application efficiency and 
productivity	



–  https://www.olcf.ornl.gov/support/getting-started/olcf-
director-discretion-project-application/	
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