Interatomic Potentials in LAMMPS

Aidan P. Thompson

Sandia National Laboratories

2nd LAMMPS Users Workshop
August 2011, Albuquerque, New Mexico
Recently Added Potentials

- **COMB potential (Generation 2)**
 Tzu-Ray Shan (U Florida), talk on Tues PM metal and semiconductors and their oxides

- **Embedded ion method potentials (EIM)**
 Xiaowang Zhou (Sandia), ionic compounds combo of Li, Na, K, Rb, Cs, F, Cl, Br, and I

- **C++ version of ReaxFF**
 Metin Aktulga (LBNL), talk on Wed PM can be faster than Fortran version by 2-3x

- **Electron force field (eFF)**
 Andres Jaramillo (Caltech), explicit electron dynamics in extreme conditions
Recently Added Potentials

- **AIREBO potential bug fixes**
 Marcel Fallet & Steve Stuart (Clemson), one more bug-fix, upgrade is imminent

- **Mishin ADP potential**
 Chris Weinberger (Sandia) & Chandra Veer Singh (Cornell) angular-dependent EAM for metals and alloys

- **Dreiding potential**
 Tod Pascal (Caltech) hydrogen bonding for solvated biomolecules

- **New Peridynamics potentials**
 Mike Parks & Stuart Silling (Sandia), talk on Wed PM fracture at the meso and continuum scales
Upcoming Potentials

• Core/shell potential
 Mike Chandross (Sandia), zero-order model for polarization, uranium and other nuclear fuel materials

• COMB potential (Generation 3)
 Tzu-Ray Shan (U Florida), more materials with polarization effects

• MGPT potential
 from John Moriarty & Jaime Marian (LLNL), tantalum and other transition metals

• BOP potential
 Xiaowang Zhou and Don Ward (Sandia) High-accuracy potential for semiconductors
LAMMPS Potential benchmarks

<table>
<thead>
<tr>
<th>Potential</th>
<th>System</th>
<th>Atoms</th>
<th>Timestep</th>
<th>CPU</th>
<th>LJ Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular</td>
<td>chute flow</td>
<td>32000</td>
<td>0.0001 tau</td>
<td>5.08e-7</td>
<td>0.34x</td>
</tr>
<tr>
<td>FENE bead/spring</td>
<td>polymer melt</td>
<td>32000</td>
<td>0.012 tau</td>
<td>5.32e-7</td>
<td>0.36x</td>
</tr>
<tr>
<td>Lennard-Jones</td>
<td>LJ liquid</td>
<td>32000</td>
<td>0.005 tau</td>
<td>1.48e-6</td>
<td>1.0x</td>
</tr>
<tr>
<td>DPD</td>
<td>pure solvent</td>
<td>32000</td>
<td>0.04 tau</td>
<td>2.16e-6</td>
<td>1.46x</td>
</tr>
<tr>
<td>EAM</td>
<td>bulk Cu</td>
<td>32000</td>
<td>5 fmsec</td>
<td>3.59e-6</td>
<td>2.4x</td>
</tr>
<tr>
<td>Tersoff</td>
<td>bulk Si</td>
<td>32000</td>
<td>1 fmsec</td>
<td>6.01e-6</td>
<td>4.1x</td>
</tr>
<tr>
<td>Stillinger-Weber</td>
<td>bulk Si</td>
<td>32000</td>
<td>1 fmsec</td>
<td>6.10e-6</td>
<td>4.1x</td>
</tr>
<tr>
<td>EIM</td>
<td>crystalline NaCl</td>
<td>32000</td>
<td>0.5 fmsec</td>
<td>9.69e-6</td>
<td>6.5x</td>
</tr>
<tr>
<td>SPC/E</td>
<td>liquid water</td>
<td>36000</td>
<td>2 fmsec</td>
<td>1.43e-5</td>
<td>9.7x</td>
</tr>
<tr>
<td>CHARMM + PPPM</td>
<td>solvated protein</td>
<td>32000</td>
<td>2 fmsec</td>
<td>2.01e-5</td>
<td>13.6x</td>
</tr>
<tr>
<td>MEAM</td>
<td>bulk Ni</td>
<td>32000</td>
<td>5 fmsec</td>
<td>2.31e-5</td>
<td>15.6x</td>
</tr>
<tr>
<td>Peridynamics</td>
<td>glass fracture</td>
<td>32000</td>
<td>22.2 nsec</td>
<td>2.42e-5</td>
<td>16.4x</td>
</tr>
<tr>
<td>Gay-Berne</td>
<td>ellipsoid mixture</td>
<td>32768</td>
<td>0.002 tau</td>
<td>4.09e-5</td>
<td>28.3x</td>
</tr>
<tr>
<td>AIREBO</td>
<td>polyethylene</td>
<td>32640</td>
<td>0.5 fmsec</td>
<td>8.09e-5</td>
<td>54.7x</td>
</tr>
<tr>
<td>COMB</td>
<td>crystalline SiO2</td>
<td>32400</td>
<td>0.2 fmsec</td>
<td>4.19e-4</td>
<td>284x</td>
</tr>
<tr>
<td>eFF</td>
<td>H plasma</td>
<td>32000</td>
<td>0.001 fmsec</td>
<td>4.52e-4</td>
<td>306x</td>
</tr>
<tr>
<td>ReaxFF</td>
<td>PETN crystal</td>
<td>16240</td>
<td>0.1 fmsec</td>
<td>4.99e-4</td>
<td>337x</td>
</tr>
<tr>
<td>ReaxFF/C</td>
<td>PETN crystal</td>
<td>32480</td>
<td>0.1 fmsec</td>
<td>2.73e-4</td>
<td>185x</td>
</tr>
<tr>
<td>VASP/small</td>
<td>water</td>
<td>192/512</td>
<td>0.3 fmsec</td>
<td>26.2</td>
<td>17.7e6</td>
</tr>
<tr>
<td>VASP/medium</td>
<td>CO2</td>
<td>192/1024</td>
<td>0.8 fmsec</td>
<td>252</td>
<td>170e6</td>
</tr>
<tr>
<td>VASP/large</td>
<td>Xe</td>
<td>432/3456</td>
<td>2.0 fmsec</td>
<td>1344</td>
<td>908e6</td>
</tr>
</tbody>
</table>
Compute Cost of Interatomic Potentials Growing Exponentially

Compute cost of LAMMPS potentials versus publication date

Drivers
- Cycles are cheap
- Availability of quantum calculations ($N < 100$)
- Qualitative accuracy no longer enough

http://lammps.sandia.gov/bench.html#potentials
Challenges with Complex Potentials

• How to Implement in LAMMPS?
 – Rewrite code from scratch (REBO)
 – Integrate existing serial code (ReaxFF)
 – Access via general API (KIM)

• How to Validate LAMMPS Version?

• How to Handle New Versions?
How to Fit Potentials to New Materials?

• Automated fitting procedures exist for certain classes of materials and potentials (EAM)
• More commonly, good fits can be obtained only by gurus (Baskes, van Duin)
• Combination of nonlinear optimization and physical intuition
• Increasing interest in automated machine-learning approaches
 – Splines
 – Genetic programs
 – Multi-objective optimization
 – Neural networks
 – Series expansions
GAP Approach for Interatomic Potentials

GAP: A systematic, informatics approach
- Based on QM and mathematics rather than empiricism.
- Local density around each atom expanded in 4D hyperspherical harmonics, analogous to Fourier series
- Atomic configurations described by bispectrum of lowest-order coefficients in series
- Preserves universal physical symmetries: invariance w.r.t. rotation, translation, permutation
- Gaussian process (GP) regression used to interpolate energy of QM configurations
- 100-1000x more expensive than MEAM
- Far cheaper than QM, linear scaling
- Can trade performance and accuracy

Diamond: Force errors for GAP fitted to DFT. Adding higher-order GAP coefficients systematically increases accuracy
Bartok et al., PRL 104 136403 (2010)
GAP Potential for Beryllium

Beryllium

Working with GAP developers, fitting directly to forces and energies from high-temperature DFT MD simulations of small systems (from Mike Desjarlais, 1640)

- Initial fit to:
 - ambient HCP
 - high-pressure BCC and liquid
- Accurately reproduced that data
- Problems with:
 - ambient elastic constants
 - high-pressure HCP
- Need to refit with more data