Entangled Polymer Melts with Dissipative Particle Dynamics

Timothy Sirk, Yelena Sliozberg, John Brennan, and Jan Andzelm

Army Research Laboratory
August 11, 2011
How to prevent chain crossing, and still be fast? ...apply force between bonds

Yelena Sliozberg, unpublished
Dissipative Particle Dynamics

\[\mathbf{F}_i = \sum_{j \neq i} \left(\mathbf{F}^C_{ij} + \mathbf{F}^D_{ij} + \mathbf{F}^R_{ij} + \mathbf{F}^{SRP}_{ij} + \mathbf{F}^H_{ij} \right) \]

Total Force

\[\mathbf{F}^C_{ij} = \begin{cases} a_{ij} \left(1 - \frac{r_{ij}}{r_c} \right) \mathbf{r}_{ij} & (r_{ij} < r_c) \\ 0 & (r_{ij} \geq r_c) \end{cases} \]

\[\mathbf{F}^D_{ij} = -\gamma \omega^D(r_{ij}) \left(\mathbf{r}_{ij} \cdot \mathbf{v}_{ij} \right) \mathbf{r}_{ij} \]

\[\omega^D(r) = \left[\omega^R(r) \right]^2 \]

\[\sigma^2 = 2\gamma k_B T \]

\[\mathbf{F}^{SRP}_{ij} = a_{ij}^{\tilde{c}} \left(1 - \frac{d_{ij}}{d_c} \right) \mathbf{d}_{ij} \begin{cases} (d_{ij} < d_c) \\ 0 \qquad (d_{ij} \geq d_c) \end{cases} \]

\[\mathbf{F}^H_{ij} = -K(r_{ij} - r_0) \mathbf{r}_{ij} \]

\[\mathbf{E}_{ijk} = K \cos(\theta) \]

DPD

SRP

Segmental Repulsive Potential

Bond & Angle

Current SRP

- minimum distance between two bonds
- distribute force unevenly between atoms
- slow, sometimes overshoots \(d_{ij} \)

mSRP (new)

- midpoint distance between bonds
- distribute force evenly
- faster, accurate

Requires new parameters for SRP, angle potentials

DPD + SRP + Bond + Angles

SRP implemented in LAMMPS

- communicate 'ghost bonds' with forward_pair_comm()
- build a bond neighbor list
- newton bond off, apply force to local atoms

Parameterization: Chain Crossings

DPD with Goujon SRP:
Few chain crossings, large energy contribution

DPD without SRP:
Chains cross freely

\[F_{ij} = a_{ij} \left(1 - \frac{d_{ij}}{d_c} \right) \]

Vary potential parameters: \(a_{ij}, d_c \)
Count bond crossing
Check thermodynamics
Choose \(a_{ij}, d_c \)

Test system: 78 chains of N=30, 2*10^6 timesteps
Prevent bond crossings and minimize the effect of SRP

Midpoint Distance

Want low P, PE contributions, and few bond crossings -> choose $a=100, r=0.8$

- Small pressure increase over DPD
- Thermostat stable at low temp
- Any $\gamma > 4.5$

Minimum Distance (Goujon et. al)

- Larger PE and pressure
- Thermostat struggles with low temp
- Restricted to $\gamma \approx 50$ for $T=1.0$

\[
P = \frac{Nk_BT}{V} + \sum_{i}^{N} \frac{r_i \cdot f_i}{dV}
\]
Problem
- Neighboring bonds do not interact
- Favorable for chain to “fold”
- Not good for structure
- Quantify by characteristic ratio, C_n

Solution
- Add angular potential to maintain structure
- Optimize K using C_n
- Too weak = poor structure
- Too much = polymer is stiff

\[E = K[1 + \cos(\theta)] \]

Vary parameter: K

Check chain structure

Choose K

\[C_n = \frac{<R^2>}{Nl^2} \]

Goujon et al. is less than regular DPD chain due to “kinks”
Diffusion

Equilibration

1. **Box Size:** depends on your needs
 1. **Structure**
 2. **Stress/Strain**
 3. **Diffusion**

2. **Time:** not straightforward
 1. MSD$_{g_1}$ = MSD$_{g_3}$ won’t happen for long chains
 2. At least move a radius of gyration
 3. Better to wait for $0.90 \times d(g_1)/dt = d(g_3)/dt$

3. **Shortcut:** measure characteristic ratio, prebuild the equilibrium structure

Analytical Correction

inner monomers

center of mass (COM)

inner monomers wrt COM of chain

D vs. 1/L

Chain Length and Entanglements

1. Identify entanglements with diffusion
 - onset of entangled behavior
 - chain length for one entanglement

2. Check mechanical behavior of entangled chains

Graph

- Dynamics of chains from DPD+ entanglements reaches reptation limit!

To calculate chain diffusion (DN):

Equilibrate until monomers move together with chains
Mechanical Behavior

- Tensile test – a fundamental mechanical test
- Create stress by deforming simulation box
- Compute normal stress as the box is deformed

\[\sigma = -P_{zz} + \frac{1}{2}(P_{xx} + P_{yy}) \]

Unentangled chains
- Short DPD chains with mSRP
- Short/long standard DPD
- Less relative motion when stress is applied

Entangled chains
- Long DPD chains with mSRP
- Entanglements resist relative movement of chains
- Relax more slowly than short chains

\[b = \frac{1}{2} \left(\lambda_z^2 + \lambda_x^2 + \lambda_y^2 \right) \]

Graphs showing stress-strain curves for long, short, and mixed DPD+mSRP simulations.
Timothy Sirk
Army Research Laboratory

tim.sirk@us.army.mil