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Step 2

Step 3
CG model, CG potential and DPD thermostat

Recover diffusion coefficient and viscosity

After matching the pressure

Continuum mechanics: efficient but inadequate at nano scales.
Molecular dynamics: accurate but computationally expensive.
Goal: to develop effective hybrid computational methods for

Motivation
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Pmatch g(r) & P

CG level: 0%,cutoff=2.5The attractive part 
of the potential is 
recovered. Now the 

Input CG potential table into LAMMPS

Step1

p

Detailed simulation of the target system

Construct CG potential
Recover g(r) and pressure 
Correct thermodynamics

Properties: g(r), Pressure, Transport coefficient

y
Correct thermodynamics and dynamics
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Goal: to develop effective hybrid computational methods for
nano-scale flows.
Key issue: to determine whether an intermediate mesoscale
description is required.

Model
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CG level: 50%,cutoff=4.5

potentials are more 
similar qualitatively.

Pressure matching
acts mainly on the
long-range potential. 

Pair_style hybrid/overlap
table and dpd/tstat
Fix viscosity
Compute msd

Dissipative Particle Dynamics thermostat (DPD)[2]

Viscosity: Reverse Nonequilibrium Molecular Dynamics
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Galilean-invariant thermostat
 the dissipative force term mimics 

the friction between particles and 
dissipates energy.
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Atomistic model: N0 = 1000, ρ(number density) = 0.8, rcut= 2.5σ
and Lennard-Jones (LJ) potential.

Pressure is very 
sensitive to the   
potential, unlike g(r).

Remove  N  of particlesAtomistic model CG model

Long-ranged interactions are important in high CG level case. 
The cutoff needs to be extended to recover g(r) and pressure.
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Viscosity: Reverse Nonequilibrium Molecular Dynamics 
(RNEMD) [3] 

Diffusion: Mean Square Displacement (MSD)
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Match the dynamical properties

Results and Discussion

N0 N0-N

CG level: = N/N0x100%L L

linear response theory
The cutoff should be optimized based on the computational 

efficiency.
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Rowley et al

Coarse-grained (CG) model should preserve the thermodynamic
and dynamic properties of the detailed atomistic system.

Method
Iterative Boltzmann inversion: construct an effective pairwise

Results and Discussion
Effective potentials for various CG levels
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force is a good
initial guess for A self-consistent value of  γ for recovering both diffusion and 
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potential for the CG model that reproduces the radial distribution
function, g(r), of the detailed atomistic system.[1]
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high CG level case.

0% CG case doesn’t reproduce   
the LJ potential(rcut= 2.5) since 
we start with a longer-ranged 
interaction(rcut = L/2 ≈5.4).

viscosity is obtained for each CG level with the optimized cutoff 
length.

The friction coefficient, γ, should 
increase as the length of interaction 
decreases.
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L is the length of 
simulation box

Pressure matching: put pressure constraint on the effective
potential through an optimization procedure.
 Objective function
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Penalty parameter

Convergence test[1]
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The potential is closer to 
the LJ potential when rcut
is reduced to 2.5.  

the structure of a dense LJ

 0% ( non CG case )

γ increases as the degree of 
CG ( ) increases.
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the structure of a dense LJ
(ρ 0.65) system is mainly 
determined by the repulsive 
part of the potential.[4]


