Hands-on: Data analysis and advanced scripting

Mario Orsi
m.orsi@qmul.ac.uk www.orsi.sems.qmul.ac.uk

LAMMPS workshop, ICTP Trieste, 25 March 2014
Learning objectives

• “On-the-fly” analysis: use LAMMPS to compute/accumulate/average properties of interest while the simulation is running
 – Use “variable” commands to perform simple calculations
 – Use “compute” and “fix” commands for more elaborate calculations

• Post-processing: use external tools (Python scripts) to perform additional analysis at the end of the simulation

This hands-on activity was derived from actual research work (see paper in reference folder)
Bulk water – basic simulation

- Enter directory `simulation-bulk/1`
- Inspect input files: `in.bulk`, `forcefield.TIP3P`, `data.singleTIP3P`
- Run: `$ lammps < in.bulk`
- Inspect output
- Visualize:
 - Directly (.jpg, .mpg)
 - With VMD (.lammpstrj)

Pregenerated visuals available in `viz` subdirectory
Bulk water – potential energy

• Work in directory 1/
• Task: modify input script to compute and output the potential energy per molecule in units of kcal/mol
• Hints:
 – Check out “compute pe” command
 – Remember to normalize by the number of molecules
• Result should be ~ -9.9 kcal/mol
• When finished, compare your script and results with content of directory 2/
Bulk water – mass density

• Work in directory 2/
• Task: modify input script to compute and output the system density in units of g/cm3
• Hints:
 – Use *variable* commands:
 • To define useful constants (molecular mass, Avogadro’s number, conversion factors, etc.)
 • To perform the actual calculation
• Result should be \(~ 1 \text{ g/cm}^3\)
• When finished, compare your script and results with content of directory 3/
Bulk water – radial distribution function (RDF)

• Work in directory 3/
• Task: modify input script to compute and output the oxygen-oxygen RDF
• Hints:
 – Use `compute rdf`
 – Obtain oxygen type from data file
 – Use `fix ave/time` to generate output file
• When finished, compare your script and results with content of directory 4/
Bulk water – radial distribution function (RDF) post-processing

- Work in directory 4/
- Output gOO.rdf contains comments, extra data, cannot be plot directly
- File gOO.rdf needs to be post-processed
- Check out analysis-tools/rdf2data.py (open with text editor and see comments for usage instructions)
- Example:
 $ python ../../../analysis-tools/rdf2data.py gOO.rdf > gOO.dat

- gOO.dat is now 2-column matrix (r|gOO) which can be plotted together with reference experimental data:
 $ xmgrace gOO.dat ../../../reference/gOO-exp.dat
- Compare results with 4-post
RDF: simulation vs. experiment

Simulation curve is noisy because of short simulation time. For converged results, see paper in reference folder.
Bulk water – mean squared displacement (MSD)

• Work in directory 4
• Task: compute and output the MSD
• Hints:
 – Use `compute msd`
 – Assume oxygen MSD = water MSD
 – Use fix ave/time to generate output file
• When finished, compare your script and results with content of directory 5
Bulk water – Diffusion

• Work in directory 5
• Diffusion coefficient defined as:
 \[D = \frac{\text{MSD}(t)}{6t} \]
 with \(t \) sufficiently large to get convergence
• MSD data can be post-processed to obtain \(D \):
 • Check out analysis-tools/msd2diff.py (open with text editor and see comments for usage instructions)
 • Example:

 \[
 \text{python} \ldots/\ldots/\text{analysis-tools/msd2diff.py} \text{ wat.msd} 2 3 > \text{wat.diff}
 \]
 • Compare with 5-post
MSD and diffusion

Converged results from paper in reference folder
Water/vapor interface – basic simulation

• Enter directory *simulation-interface/1*
• Inspect input script
• Notice how the change_box command is used to increase z dimension and create water layers separated by vacuum layers
• Run: `$ lammps < in.liquid-vapor`
• Inspect output
• Visualize:
 – Directly (.jpg, .mpg)
 – With VMD (.lammpstrj)

Pregenerated visuals available in *viz* subdirectory
Water surface tension

- Work in directory 1/
- Task: modify input script to compute and output the surface tension of the water-vacuum system in units of mN/m (milliNewton/meter)
- Surface tension = \(L_z \times \left[P_z - \left(\frac{P_x + P_y}{2} \right) \right] / 2 \)
- Hints:
 - Use equal-style variables
 - Average with fix ave/time
 - Define conversion factors between LAMMPS units and required output units
- When finished, compare your script and results with content of directory 2/
Water number density profile

• Work in directory 2/
• Task: modify input script to compute and output the number density profile across the water-vacuum interface
• Hints:
 – Use fix ave/spatial with appropriate keywords
 – Compute individual profiles for H and O
• When finished, compare your script and results with content of directory 3/
Water mass density profile

• Work in directory 3/
• Task: post-process H and O number density profiles to obtain total H$_2$O mass density profile
• Hints:
 – Use/analysis-tools/numDens2massDens.py (open file with text editor and see comments about usage)
 – Compute individual profiles for H and O
 – To get total profile, see/analysis-tools/sumProfile.py
• When finished, compare your results with content of directory 3-post/
Mass density profile across water-vapor interface for various models

Converged results (see paper in reference folder)