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Abstract

First-principles calculations of the energy of various crystal structures of Fe, Ni and ordered Fe–Ni compounds with different

stoichiometries have been performed by the linearized augmented plane wave (LAPW) method in the generalized gradient approx-

imation. The most stable compounds are L12–Ni3Fe, L10–FeNi, C11f–Ni2Fe and C11f–Fe2Ni. The L12–Ni3Fe compound has the

largest negative formation energy, which is consistent with the experimental Fe–Ni phase diagram. The L10–FeNi compound has

also been observed experimentally in meteorite samples as a metastable phase. It is suggested here that the C11f compounds could

also form in Fe–Ni alloys at low temperatures. A new semi-empirical interatomic potential has been developed for the Fe–Ni system

by fitting to experimental data and the results of the LAPW calculations. Recognizing the significance of the covalent component of

bonding in this system, the potential is based on the embedded-atom method (EAM) but additionally includes a bond-angle depen-

dence. In comparison with the existing modified EAM method, our potential form is simpler, extends interactions to several (3–5)

coordination shells and replaces the screening procedure by a smooth cutoff of the potential functions. The potential reproduces a

variety of properties of Fe and Ni with a reasonable accuracy. It also reproduces all stability trends across the Fe–Ni system estab-

lished by the LAPW calculations. The potential can be useful in atomistic simulations of the phases of the Fe–Ni system.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Computer modeling; Interatomic potential; First-principles calculations; Iron; Nickel
1. Introduction

The Fe–Ni system is very important for the under-

standing of steels and other ferrous alloys, as well as
the Earth�s core and iron meteorites. Since Ni is a c-sta-
bilizer in Fe, Fe–Ni alloys offer an ideal model system to

study processes in commercial austenitic steels. Fe–Ni

alloys are also of interest in connection with the Invar

effect and the martensitic transformation from face-cen-

tered cubic (fcc) austenite to body-centered cubic (bcc)

martensite at low temperatures.
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The accepted version of the Fe–Ni phase diagram

contains a c-phase field extending from pure fcc-Fe to

pure fcc-Ni, terminal solid solutions based on the bcc

a and d phases of iron, and an intermetallic compound
c 0-Ni3Fe with the L12 structure [1,2]. In meteorite spec-

imens, a c00-FeNi phase with the L10 structure has also

been found [3,4]. The precipitation of this phase is only

possible under extremely slow (millions of years) cooling

conditions that are realized in meteorite alloys and are

inaccessible under laboratory conditions. There has

been a discussion in the literature as to whether the

c00-phase is stable or metastable [2–4]. The most recent
thermodynamic calculations indicate that the c00-phase
is metastable, but it would only take a 300 J/mol

(�0.003 eV/atom) decrease in the free energy to make
ll rights reserved.
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this phase stable at room temperature [2]. So far, how-

ever, phase stability in the Fe–Ni system has not been

studied thoroughly by first-principles calculations or

atomistic simulations.

Many properties of Fe–Ni alloys need to be under-

stood at the atomic level. Atomistic computer simula-
tions of dislocation motion [5] and the martensitic

transformation [6,7] in this system have been performed

with semi-empirical potentials of the embedded-atom

method (EAM) [8]. Unfortunately, EAM is not an ade-

quate model for Fe–Ni alloys or even for pure Fe.

Although several EAM potentials have been developed

for Fe [9–15], their quality remains below the level exist-

ing for EAM potentials for simple and noble metals. It
has long been recognized that the central-force descrip-

tion of atomic interactions underlying EAM is not accu-

rate for transition metals, particularly for iron.

Recently, angular-dependent Fe potentials have been

developed using the modified EAM (MEAM) [16,17]

and the embedded-defect method (EDM) [13,18–20]

and a marked improvement over regular EAM has been

demonstrated for a number of properties. It should be
pointed out, however, that those angular potentials have

been fit to experimental data with little or no input from

first-principles calculations.

It has been recognized over recent years that the

incorporation of first-principles data in the fitting data-

base significantly improves the reliability of semi-empir-

ical potentials by sampling a larger area of configuration

space than experimental data alone can do [21–28]. In
the present work we apply this approach, in conjunction

with an angular-dependent potential form, to construct

a new semi-empirical potential for Fe. As far as Ni is

concerned, although it is also a transition metal, it lends

itself to an EAM description more readily than Fe (see

e.g. [22,28] and references therein). Nevertheless, we

wanted to explore whether the incorporation of angu-

lar-dependent interactions could further improve the
quality of EAM Ni potentials. To address the binary

Fe–Ni system, we also use an angular-dependent poten-

tial form but its parameters are optimized by fitting to

first-principles data only. While particular applications

of the potentials developed in this work will be the sub-

ject of our future work, in this paper we test their accu-

racy and transferability by computing a variety of

properties of Fe, Ni and Fe–Ni compounds. We place
emphasis on the phase stability in the Fe–Ni system,

which we study here by both first-principles calculations

and with the new interatomic potentials.

In Section 2 of the paper we present the results of

first-principles calculations for Fe, Ni and a series of or-

dered Fe–Ni compounds. In Section 3 we introduce our

angular-dependent potential form, followed by a

description of the potential parameterization and fitting
procedures (Section 4). The potential is tested by calcu-

lating properties of Fe (Section 5), Ni (Section 6) and
Fe–Ni compounds (Section 7). In Section 8 we summa-

rize our results and draw conclusions.
2. First-principles calculations

The goal of the first-principles calculations conducted

in this work is twofold: (1) evaluate the relative stability

of different phases of the Fe–Ni system at low tempera-

tures, and (2) generate a database for constructing semi-
empirical potentials for this system.

2.1. Methodology

Self-consistent first-principles calculations have been

performed for Fe, Ni and ordered Fe–Ni compounds

using the full-potential [29] linearized augmented plane

wave (LAPW) method [30]. A full relativistic calculation
has been made for the core states (1s2, 2s2 and 2p6) of

both Fe and Ni. The spin–orbit interactions [31] for

the valence states (including 3s2 and 3p2 for both ele-

ments) are neglected. Local orbitals [32] are used to de-

scribe the 3s and 3p levels for both elements. The

potentials are calculated using the Perdew–Wang 1991

(PW91) version [33] of the generalized gradient approx-

imation (GGA) to the spin-polarized [34] density func-
tional theory (DFT) [35,36]. It is known that the local

density approximation (LDA) overstabilizes the fcc

structure of Fe relative to bcc [37] and that one has to

use GGA to correctly reproduce bcc-Fe as the ground

state [38].

In all of the calculations, we use a muffin-tin radius

of Rmt = 2.0 a.u. for both types of atoms, with a plane-

wave cutoff of Kmax = 11.5/Rmt. We estimate the error
due to this cutoff to be less that 0.5 mRy/atom for

the total energy. Integration over the Brillouin zone is

implemented using a regular k-point mesh, including

the origin, thermal broadening with a temperature of

5 mRy, and extrapolation to zero temperature follow-

ing Gillan [39]. We have carefully checked the k-point

convergence for each structure [40]. For typical fcc-

based structures we use a k-point mesh equivalent to
489 points in the irreducible part of the fcc Brillouin

zone, while for bcc-based structures we use a mesh of

285 points in the irreducible part of the bcc Brillouin

zone. We estimate [41] the integration error due to

the finite k-point mesh to be less than 0.1 mRy/atom.

In most cases, the magnetic ordering was assumed to

be ferromagnetic, i.e., the spin moments of all atoms

were aligned in the same direction. In a few cases, how-
ever, antiferro- and ferrimagnetic structures were also

calculated as explained below (Section 2.2). The com-

puter code used for these calculations was originally

written by Krakauer [29,37] and subsequently modified

by Singh [32] to implement the local orbital option and

by Mehl to include improvements of the GGA option.



Table 1

Formation energies (per atom, relative to bcc-Fe and fcc-Ni), lattice

constants (a0) and the magnetic moment per atom (M) of Fe–Ni

compounds obtained by spin-polarized LAPW/GGA calculations

Formula Structure Lattice Energy (eV) a0 (nm) M (lB)

Fe A2 bcc 0.000 0.2831 2.168

Fe A1 fcc 0.129 0.3483 1.342

Fe A1 fcc 0.076 0.3430a 0.000b

Fe A1 fcc 0.067 0.3454c 0.000d

Fe7Ni Ca7Ge fcc 0.109 0.7029 1.361

Fe7Ni Ca7Ge fcc 0.092 0.7034 0.942e

Fe7Ni cI16 bcc 0.009 0.5704 2.244

Fe3Ni L12 fcc 0.048 0.3578 2.066

Fe3Ni D03 bcc 0.034 0.5718 2.162

Fe2Ni C11f fcc �0.015 0.3525f 1.887

FeNi L10 fcc �0.067 0.3556g 1.630

FeNi L11 fcc 0.002 0.3564 1.588

FeNi B2 bcc 0.084 0.2854 1.768

FeNi B1 sc 0.560 0.4745 1.870

Ni2Fe C11f fcc �0.053 0.3560h 1.285

Ni3Fe L12 fcc �0.089 0.3545 1.202

Ni3Fe D03 bcc 0.024 0.5643 1.102

NiFe Ca7Ge fcc �0.038 0.7065 0.906

NiFe cI16 bcc 0.062 0.5628 0.851

Ni A1 fcc 0.000 0.3519 0.631

Ni A2 bcc 0.099 0.2801 0.540

The energies and lattice constants of pure Fe and Ni are included for

completeness. Unless otherwise indicated, the magnetic state is

ferromagnet.
a c/a = 1.070.
b AFM.
c c/a = 2.172.
d AFM2.
e Ferrimagnet.
f c/a = 3.142.
g c/a = 1.007.
h c/a = 2.985.
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The energy of each structure of a metal or compound

has been computed for several atomic volumes and the

equilibrium lattice parameter has been determined by

fitting the energy–volume relation (binding curve) to

Birch�s equation of state [42]. Non-cubic compounds

have been additionally relaxed with respect to the c/a
ratio.

2.2. LAPW results

For Fe and Ni, the energy–volume functions ob-

tained are in agreement with previous first-principles

calculations [7,22,37,38,43–46]. In particular, the loss

of magnetic moment of ferromagnetic fcc-Fe under

compression produces a double-minimum shape of the

binding curve, with non-magnetic fcc-Fe having a larger

atomic volume than the ferromagnetic fcc-Fe. The

L10-type antiferromagnetic (AFM) ordering of fcc-Fe
(with spin up and down in alternating (200) layers) pro-

duces a single-minimum binding curve and reduces the

equilibrium energy. The AFM2 ordering (with spins

up and down in alternating pairs of adjacent (200) lay-

ers) reduces the fcc energy even further, a result which is

consistent with previous calculations [7,43–46]. All

Fe1�xNix compounds with x > 0.125 were treated ferro-

magnetically. Similarly, we treated the bcc-like cI16
Fe7Ni compound as ferromagnetic. Treating as ferro-

magnetic the fcc-like Fe7Ni compound, which we took

to have the Ca7Ge structure, led to a double-minimum

binding curve with both low and high spin minima, just

as in fcc-Fe. We then found that we could obtain a lower

energy structure by aligning the Ni atom and its six

nearest-neighboring Fe atoms with spin in the up direc-

tion, and aligning the spin on the remaining Fe atom,
which is a second neighbor to the Ni atoms, in the down

direction. This ferrimagnetic structure has the usual sin-

gle-minimum binding curve and does not display a

dramatic fall-off in magnetic moment as is seen fcc Fe.

This suggests that the magnetic structure of fcc-like

low nickel Fe1�xNix compounds might be ferrimagnetic,

or, with a large enough unit cell, anti-ferromagnetic.

Table 1 summarizes the equilibrium formation ener-
gies, lattice constants and magnetic moments of the

Fe–Ni compounds calculated in this work. The forma-

tion energy is measured relative to bcc-Fe and fcc-Ni

with equilibrium lattice constants. A detailed crystallo-

graphic description of the structures can be found at

http://cst-www.nrl.navy.mil/lattice/. The stoichiometries

of the compounds are chosen so as to cover a wide con-

centration range from 12.5 to 87.5 at.% Ni. Besides sev-
eral common structures based on the fcc and bcc lattices,

we also include the Ca7Ge and cI16 structures which

represent the fcc and bcc supercells, respectively, with

one Ni atom per seven Fe atoms or one Fe atom per se-

ven Ni atoms. These structures are designed to represent

atomic environments in dilute solid solutions. Further-
more, grand canonical Monte Carlo simulations with

the semi-empirical potential developed in this work

(see below) have revealed two more ordered structures

that often formed during the simulations at low temper-
atures (300–400 K). These structures represent stacking

sequences of Fe and Ni (002) layers in the fcc lattice:

namely, FeFeNiFeFeNi and NiNiFeNiNiFe, respec-

tively. They have the stoichiometries of Fe2Ni and

Ni2Fe, respectively, and have a conventional unit cell

with a triple size in the [001] direction (a · a · 3a).

The subsequent atomic relaxation results in small devia-

tions of the c/a ratio from the ideal value of 3. We
designate these structures as C11f, in analogy with the

bcc-like C11b (MoSi2 prototype) structure. Since the

Monte Carlo simulations have pointed to their high sta-

bility, their energy has also been calculated by the

LAPW method.

In Fig. 1(a) we plot the composition dependence of

the formation energy of the compounds. For structures

with multiple magnetic states we include the most stable
one. The B1 structure is not shown as its energy lies be-

yond the scale of this plot. We observe that the addition

of Ni to Fe stabilizes fcc-based structures (open circles)

http://cst-www.nrl.navy.mil/lattice/
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Fig. 1. Formation energies of Fe–Ni compounds relative to bcc-Fe

and fcc-Ni obtained by LAPW calculations (a) and with the ADP

potential (b). The filled and open symbols represent bcc-type and fcc-

type structures, respectively. All structures have been relaxed with

respect to atomic volume, and the L10 and C11f structures also with

respect to the c/a ratio. The lines show the tie lines corresponding to

the experimental phase diagram.
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and destabilizes bcc-based structures (filled circles), a

trend which is consistent with the experimental phase

diagram [1]. We also observe that the L12–Ni3Fe phase,

which is present on the experimental diagram, has the

most negative formation energy out of all compounds

calculated in this work. According to the experimental

phase diagram, the formation energies of all alternate

phases should lie above the tie lines connecting
L12–Ni3Fe with bcc-Fe and fcc-Ni. Furthermore, phases

whose formation energies are closer to these tie lines are

most stable and have a greater chance to be found in

experiments under metastable conditions.

In agreement with experimental observations of the

L10–FeNi (c00) phase [2–4,47], its formation energy lies

practically on a tie line. Actually, it lies even slightly be-

low the tie line, but the energy difference (�0.01 eV) is
comparable to the accuracy of our calculations. Even

if the LAPW energy of L10–FeNi lies slightly below

the tie line at 0 K, the situation can be reversed at finite

temperatures due to the effect of atomic vibrations. Al-

ready the energy of zero-point vibrations, e0, can readily

exceed 0.01 eV. Indeed, assuming that the Debye tem-
peratures h of the relevant phases (bcc-Fe, L10–FeNi

and L12–Ni3Fe) are close to room temperature (in

reality they are higher), e0 equals approximately

kBh/2 � 0.013 eV, kB being Boltzmann�s constant. Since
e0 values of the phases are generally different, it is quite

possible for them to shift the formation energy of

L10–FeNi by an amount comparable to 0.01 eV. At finite

temperatures, the normal atomic vibrations can produce
an even stronger effect on the free energies. Our calcula-

tions are, therefore, consistent with the experimentally

observed high stability of the c00-phase despite its absence
on the accepted version of the phase diagram. Our results

are also compatible with the thermodynamic calculations

[2] predicting a slight (0.003 eV) metastability of this

phase at room temperature.

Finally, in agreement with predictions of our Monte
Carlo simulations discussed below, the LAPW forma-

tion energies of the C11f compounds are relatively

low, lying near the Fe–Ni3Fe tie line. This allows us

to make a prediction that these structures could actually

form in Fe–Ni alloys at low temperatures as metastable

phases.
3. The angular-dependent potential method

To enable atomistic simulations of the Fe–Ni system,

we need a semi-empirical potential that incorporates the

covalent component of bonding in this system and

builds on both first-principles and experimental data.

To this end, we propose a potential form that general-

izes EAM by including angular-dependent interactions.
It is inspired by the MEAM [16,48–50] and EDM [18]

methods but is different from them in certain aspects.

To reflect this distinction, we refer to our potential form

as the Angular-Dependent Potential (ADP) method. In

this method, the total energy Etot of a collection of

atoms is defined by the following expression in an

orthogonal Cartesian system:

Etot ¼
1

2

X
i;jðj6¼iÞ

UsisjðrijÞ þ
X
i

F sið�qiÞ þ
1

2

X
i;a

ðla
i Þ

2

þ 1

2

X
i;a;b

ðkabi Þ2 � 1

6

X
i

m2i . ð1Þ

Here indices i and j enumerate atoms and the super-

scripts a, b = 1, 2, 3 refer to the Cartesian directions.

The first term in Eq. (1) represents pair interactions be-

tween atoms, UsisjðrijÞ being the pair-interaction poten-

tial between an atom i of chemical sort si located at
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position ri and an atom j of chemical sort sj at position

rj = ri + rij. The function F si is the embedding energy of

atom i in the host electron density �qi induced at site i by

all other atoms of the system. The host electron density

is given by

�qi ¼
X
j 6¼i

qsjðrijÞ; ð2Þ

where qsjðrÞ is the electron density function assigned

to an atom j. The second term in Eq. (1) was intro-

duced in EAM [8] and represents many-body interac-

tions between atoms. Thus, the first two terms in

Eq. (1) constitute the regular EAM potential form [8].

Notice that they have a central-force character, i.e.,

depend on the interatomic distances rij only and not
on bond angles. The following three terms in Eq. (1)

introduce non-central components of bonding through

the vectors

la
i ¼

X
j 6¼i

usisjðrijÞraij ð3Þ

and tensors

kabi ¼
X
j 6¼i

wsisjðrijÞraijr
b
ij. ð4Þ

The quantities mi are traces of the k-tensor:

mi ¼
X
a

kaai . ð5Þ

In Eqs. (3) and (4), uss0 ðrÞ and wss0 ðrÞ are two additional

pairwise functions introduced in this method, which de-

pend on the interatomic distance r and the chemical

sorts s and s 0. The quantities la
i and kabi can be thought

of as measures of the dipole and quadrupole distortions,

respectively, of the local environment of atom i. As in

the MEAM and EDM methods, the role of the angular
terms is to penalize the total energy for deviations of the

atomic environments from cubic symmetry. While these

terms vanish in a perfect cubic structure regardless of its

volume, they turn on under non-hydrostatic strains and

thus affect the elastic constants of both cubic and non-

cubic crystals. These terms are especially important in

non-centrosymmetric structures (such as diamond and

HCP) and in materials with a negative Cauchy pressure.
The angular terms are essential for modeling bcc transi-

tion metals as they capture, in a semi-empirical manner,

the covalent component of bonding existing in such

materials. In binary compounds, the angular terms affect

the energy of such common structures as L10, L11 and

even L12, but vanish in the B1 and B2 structures. Since

most lattice defects in materials break the local lattice

symmetry, the defect formation energies are also affected
by the angular terms.

In MEAM [16,48–50], angular-dependent interac-

tions are also introduced through dipole, quadrupole

and higher-order multipoles similar to Eqs. (3)–(5).
However, in MEAM they constitute a part of the tensor

electron density whereas in the ADP method they con-

tribute to Etot directly. Our Eq. (1) can formally be de-

rived from the MEAM formalism by applying a linear

expansion of the embedding energy in terms of the

invariants of the dipole and quadrupole contributions
to the electron density and neglecting all higher-order

terms. Furthermore, MEAM normally restricts interac-

tions to one or two coordination shells and introduces a

many-body screening procedure. In contrast, ADP func-

tions extend to as many coordination shells as necessary

(usually, 3–5) and replace the screening procedure by a

smooth cutoff similar to regular EAM. This makes the

energy and force computations in ADP simpler and fas-
ter than in MEAM. In addition, due to the closer simi-

larity between the EAM and ADP methods, an

implementation of ADP potentials in an existing atom-

istic simulation code may require less coding effort.

ADP simulations run approximately a factor of two

slower than EAM simulations. Expressions for the

forces on atoms within the ADP method are given in

Appendix. These expressions are needed for both the
energy minimization and molecular dynamics simula-

tions with ADP potentials.

The EDM has only been formulated for monatomic

systems [18] and represents a particular case of the

ADP method. To obtain the EDM potential form from

ADP, one should consider a monatomic system, neglect

the dipole term in Eq. (1) and replace the quadrupole

function w(r) by Yq(r), where q(r) is the scalar electron
density defined by Eq. (2) and Y is a parameter. Thus,

EDM offers only one adjustable parameter to control

all angular-dependent interactions. The neglect of the

dipole term can be disadvantageous when calculating

elastic constants and phonon frequencies in non-centro-

symmetric structures and in simulations of lattice defects

in transition metals.

An ADP description of a pure metal requires five
functions: U(r), q(r), F ð�qÞ, u(r) and w(r) (compare with

three functions in EAM). For a binary system A–B we

need 13 functions: UAA(r), UBB(r), UAB(r), qA(r), qB(r),
F AðqÞ, F Bð�qÞ, uAA(r), uBB(r), uAB(r), wAA(r), wBB(r)

and wAB(r) (compare with seven functions in EAM).

A reasonable approach to generating a binary ADP po-

tential is to first construct elemental ADP potentials for

metals A and B and then fit the cross-interaction func-
tions UAB(r), uAB(r) and wAB(r). This approach is

applied to the Fe–Ni system.
4. ADP parameterization and fitting

4.1. Parameterization of potential functions

For the elemental bcc-Fe and fcc-Ni, the electron

density function is chosen in the form
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qðrÞ ¼ w
r � rc
h

� �
½A0zye�czð1þ B0e

�czÞ þ C0�; ð6Þ

where z = r � r0 and w(x) is a cutoff function defined by

wðxÞ ¼ x4

1þ x4
ð7Þ

if x < 0 and w(x) ” 0 if x P 0. Eq. (6) parameterizes q(r)
with fitting parameters B0, C0, r0, y, c, rc and h. The

coefficient A0 is adjusted to give a unit host electron den-
sity for the equilibrium lattice parameter. The pair inter-

action potential is postulated in the form of a

generalized Lennard–Jones function

UðrÞ ¼ w
r � rc
h

� � V 0

b2 � b1

b2
zb1

� b1
zb2

� �
þ d

� �
þ mqðrÞ;

ð8Þ
where z = r/r1, with fitting parameters b1, b2, r1, V0, d
and m. We found it useful to admix to U(r) the electron
density q(r) with an adjustable weight m. This mixing

provides more flexibility in optimizing the shape of

U(r). The cutoff function guarantees that both q(r) and
U(r) as well as their derivatives up to the second one turn

smoothly to zero at a common cutoff distance rc.

The embedding energy F ð�qÞ is obtained by inverting

the universal equation of state, which we postulate in
the form [27,28,51]

EðaÞ ¼ E0 1þ axþ ba3x3
2xþ 3

ðxþ 1Þ2

" #
e�ax. ð9Þ

Here x = a/a0 � 1,
Table 2

Optimized values of fitting parameters of the ADP potentials for Fe, Ni and

Fe Ni

Parameter Value Parameter

rc (nm) 0.5055 rc (nm)

hc (nm) 0.6202 hc (nm)

V0 (eV) �3.5674 · 104 V0 (eV)

r1 (nm) 0.1769 r1 (nm)

b1 5.4824 · 10�2 b1
b2 7.7124 b2
d (eV) 3.6665 · 104 d (eV)

m (eV) 7.0735 · 102 m (eV)

y 2.0201 · 101 y

c (1/nm) 1.2981 · 101 c (1/nm)

B0 1.1171 · 105 B0

C0 0.1391 C0

r0 (nm) �0.4052 r0 (nm)

b 0.0000 b
d1 (eV

1/2/nm) 1.9135 d1 (eV
1/2/nm)

d2 (1/nm) �1.0796 · 101 d2 (1/nm)

d3 (eV
1/2/nm) �0.8928 d3 (eV

1/2/nm)

q1 (eV
1/2/nm2) �5.8954 q1 (eV

1/2/nm2)

q2 (1/nm) �1.3872 · 101 q2 (1/nm)

q3 (eV
1/2/nm2) 2.4790 · 102 q3 (eV

1/2/nm2)
a ¼ � 9X0B
E0

� �1=2

;

E is the crystal energy per atom relative to a set of iso-
lated atoms, E0 is the equilibrium cohesive energy (mini-

mum value of E), a is the cubic lattice parameter, a0 is the

equilibrium value of a, X0 is the equilibrium atomic vol-

ume, B is the bulk modulus and b is a parameter. The lat-

ter can be adjusted to the experimental high-pressure

behavior of a metal as it was done in [27]. In this work,

however, we choose b = 0 for Fe (experimental data

extending over a wide enough range of pressures are
not available) and reuse the value b = 4.89 · 10�3 from

our previous EAM potential for Ni [28]. Notice that the

inversion of Eq. (9) guarantees an exact fit to a0,E0 andB.

The dipole and quadrupole functions are parameter-

ized by exponents,

uðrÞ ¼w
r � rc
h

� �
d1e

�d2r þ d3

� �
; ð10Þ

wðrÞ ¼w
r � rc
h

� �
q1e

�q2r þ q3ð Þ; ð11Þ

qi and di being fitting parameters. Both functions are
subject to the same cutoff as q(r) and U(r).

The cross-interaction function UFeNi(r) is chosen in

the form of a mixture of the pair-interaction functions

of Fe and Ni with exponential weights,

UFeNiðrÞ ¼ t1e�t2rUFeðrÞ þ t3e�t4rUNiðrÞ; ð12Þ
with four parameters ti. The cross dipole and quadru-
pole functions are chosen as mixtures of the relevant ele-

mental functions,
Fe–Ni

Fe–Ni

Value Parameter Value

0.5168 t1 0.4349

0.3323 t2 (nm) �2.2375

�3.5126 · 103 t3 0.2432 · 10�1

3.8673 · 10�5 t4 (nm) �8.9329

4.7067 · 10�3 mq 0.8817

0.1511 md 1.3189 · 10�2

3.6046 · 103 sNi 0.5780

0.0000 gFe (eV) �2.0833

1.9251 · 101 gNi (eV) �2.5435

1.6802 · 101

1.1914 · 105

0.2033

�0.3138

0.4890 · 10�2

4.4657 · 10�2

�1.3702 · 101

�0.9611

6.4502 · 102

0.2608

�6.0208 · 102
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Fig. 2. ADP potential functions: (a) pair interaction functions U(r),
(b) dipole functions u(r), (c) quadrupole functions w(r).

Table 3

Equilibrium energies (in eV) of alternative structures of Fe and Ni

relative to the ground state obtained with the ADP potential and by

the present first-principles LAPW calculations

Structure Fe Ni

LAPW ADP LAPW ADP

fcc 0.07 0.05 0.00 0.00

bcc 0.00 0.00 0.10 0.07

sc 0.75 0.61 1.00 0.72

Diamond 1.23 1.29 1.94 1.42
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uFeNiðrÞ ¼ð1� mdÞuFeðrÞ þ mduNiðrÞ; ð13Þ
wFeNiðrÞ ¼ð1� mqÞwFeðrÞ þ mqwNiðrÞ; ð14Þ

with adjustable weights md and mq. The potential trans-

formation coefficients sNi, gFe and gNi (see e.g.

[25,27,28,52] for their definition) are also used as adjust-

able parameters. The particular analytical forms of the

potential function defined by Eqs. (6)–(14) were ob-
tained by trying a number of different forms and select-
ing those which provided the best quality of fit with less

parameters.

4.2. Fitting database

ForFe andNi, the fitting database includes experimen-
tal values of a0, E0, three elastic constants cij, the vacancy

formation ðEf
vÞ and migration ðEm

v Þ energies, and the sur-

face energy cs. We choose one particular surface orienta-

tion for each metal and fit its energy to the experimental

orientation-averaged surface energy. The database also

includes LAPW energy–volume relations for the fcc,

bcc, simple cubic (sc) and diamond-cubic structures.

The Ni fit additionally includes the HCP and L12 struc-
tures, the latter being a defected fcc structure with one

unrelaxed vacancy per cubic unit cell. The Fe–Ni binary

fit is based on first-principles data only. Namely, we use

LAPW energy–volume relations for the following Fe–Ni

compounds:L12–Fe3Ni,D03–Fe3Ni,L10–FeNi,L11–FeNi,

B1–FeNi, B2–FeNi, L12–Ni3Fe and D03–Ni3Fe. Several

other compounds discussed in Section 2 are used for

testing the potential.
The potential functions have been optimized by min-

imizing the weighted mean-squared deviation of proper-

ties from their target values by a simulated annealing

method. For Fe, the optimized U(r) was subsequently

modified by adding a function 27(r � r*)
4 at

r < r* = 0.244 nm to eliminate an unphysical feature that

existed at short separations. For Ni, we retain all EAM

functions constructed in [28] and only adjust angular-
dependent interactions. This gives us an opportunity

to explore the extent to which angular terms can im-

prove an existing EAM potential. The optimized param-

eters are reported in Table 2 and are illustrated in Fig. 2.

Tabulated forms of the functions are available via the

World Wide Web at http://cst-www.nrl.navy.mil/bind/

eam or from the authors by request.
5. ADP results for Fe

The ADP cohesive energies of alternate structures of
Fe are in reasonable agreement with the respec-

tive LAPW energies determined by the Birch fit [42]

(Table 3). For fcc-Fe, the potential predicts the lattice

http://cst-www.nrl.navy.mil/bind/eam
http://cst-www.nrl.navy.mil/bind/eam


Table 4

Properties of bcc-Fe calculated with the ADP potential in comparison

with experimental data, first-principles and tight-binding (TB)

calculations

Property Experiment Ab initio/TB ADP

a0 (nm)* 0.28665a 0.28665

E0 (eV)* �4.28a �4.30

c11 (GPa)* 242.0b 250.0c 254.9

c12 (GPa)* 146.5b 145.0c 140.0

c44 (GPa)* 112.0b 142.0c 121.5

a (10�6/K) 11.8d 14.9

Tm (K) 1811a 2135

Ef
v (eV)* 2.0 ± 0.2e 1.93–2.02f; 2.07g; 2.35c 2.13

Em
v (eV)* 0.91h; 0.55i 0.65f; 0.67g 0.74

Ef
i [100] (eV) 4.37f; 4.64g 4.00

Ef
i [110] (eV) 3.41f; 3.64g 3.48

Ef
i [111] (eV) 4.11f; 4.34g 3.23

cus (J/m
2) 0.47j; 0.59k 0.600

cs (100) (J/m
2) 2.360l 2.179m 2.174

cs (110) (J/m
2) 2.360l 2.177

cs (111) (J/m
2)* 2.360l 2.446

The properties marked by an asterisk were included in the potential fit.

The notation of properties is explained in the text.
a Ref. [53].
b Ref. [75].
c Ref. [63]
d Ref. [76].
e Ref. [54].
f Ref. [58].
g Refs. [59,60].
h Deduced from Ef

v ¼ 2.0� 0.2 eV [54] and the activation energy of

self-diffusion 2.91 ± 0.04 eV, Refs. [56,57].
i Ref. [55].
j Spin-polarized GGA, Ref. [64].
k Spin-polarized LDA, Ref. [64].
l For average orientation, Ref. [71].

m Ref. [14].
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parameter a0 = 0.36032 nm and the cohesive energy

E0 = �4.2498 eV. This phase is mechanically unstable

with a negative shear modulus (c11 < c12).

Table 4 summarizes properties of bcc-Fe computed

with the ADP potential in comparison with experimen-

tal data and first-principles calculations. The lattice
parameter a0 = 0.28665 nm and the cohesive energy

E0 = �4.30 eV are fit to the target values exactly.1 The

elastic constants are accurately fit to the experimental

values. The vacancy formation and migration energies

are in good agreement with both experimental data

[54–57] and first-principles calculations [58–60]. The va-

cancy migration energy has been computed by the

nudged elastic band (NEB) method [61,62]. The energy
along the reaction coordinate of a vacancy jump shows

only one maximum occurring at the midpoint (1/2)

[111], which is consistent with first-principles calcula-

tions [60]. In contrast, some of the previous potentials

[12,14] produce a double-hump energy profile with a dis-
1 While the literature value is E0 = �4.28 eV [53], we found that the

choice of E0 = �4.30 eV allows a slightly better fit to other properties.
tinct local minimum at (1/2)[111]. This is apparently an

artifact of those potentials. The activation energy of self-

diffusion by the vacancy mechanism, Ef
v þ Em

v ¼ 2.87 eV,

is in excellent agreement with direct experimental mea-

surements, 2.91 ± 0.04 eV [56,57].

The self-interstitial formation energies (Ef
i ) have been

computed for three different split-dumbbell orientations

(Table 4). While the energies of the [100] and [110] ori-

entations compare well with first-principles [58,59] and

tight-binding [63] calculations, the potential clearly

overstabilizes the [111] dumbbell. The origin of this dis-

crepancy is in a large lattice relaxation accompanying

the formation of this dumbbell, with significant atomic

displacements along the [111] direction. We notice that
interstitial formation energies were not included in the

potential fit. Semi-empirical potentials often have prob-

lems reproducing the correct ordering of Ef
i values in bcc

metals. As a general trend, short-range potentials cor-

rectly predict the [110] dumbbell to be the ground state

whereas long-range potentials favor a delocalized [111]

dumbbell [13]. The latter was apparently the case with

our potential. The unstable stacking fault energy cus
has been calculated by applying shear deformation

along the ½1�11�ð110Þ path and is consistent with
Fig. 3. Phonon density of states of (a) bcc-Fe and (b) fcc-Ni measured

experimentally at 296 K (lines) [65] and calculated with the ADP

potentials at 0 K (bars).
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Table 5

Properties of fcc-Ni calculated with the ADP potential in comparison

with the EAM potential [28] and experimental data

Property Experiment ADP EAM

a0 (nm)* 0.352a 0.352 0.352

E0 (eV)* �4.45a �4.45 �4.45

c11 (GPa)* 246.5b 242.4 241.3

c12 (GPa)* 147.3b 150.3 150.8

c44 (GPa)* 124.7b 129.6 127.3

a (10�6/K) 13.4c 7.9 8.3

Tm (K) 1728a 1805 1715

Ef
v (eV)* 1.60d 1.63 1.57

Em
v (eV)* 1.30e 1.34 1.19

Ef
i [100] (eV) 4.92 4.71

Ef
i [110] (eV) 4.82 4.58

Ef
i [111] (eV) 4.70 4.49

cSF (J/m2) 0.128f 0.136 0.134

cus (J/m
2) 0.303 0.298

cs (100) (J/m
2) 2.280g 2.172 1.936

cs (110) (J/m
2)* 2.280g 2.329 2.087

cs (111) (J/m
2) 2.280g 2.005 1.759

The properties marked by an asterisk were included in the potential fit.

The notation of properties is explained in the text.
a Ref. [53].
b Ref. [77].
c Ref. [76].
d Refs. [66].
e Ref. [67].
f Ref. [69].
g For average orientation, Refs. [69,71].
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first-principles calculations [64]. The surface energies are

in very good agreement with experiment, and for the

(100) orientation, also with the recent first-principles

calculation [14].

The phonon density of states (DOS) at 0 K has

been estimated by diagonalizing the dynamical matrix

of a 9 · 9 · 9 (1458 atoms) periodic supercell and cal-

culating the distribution of the normal vibrational fre-
quencies over 15 frequency intervals from zero to the

maximum frequency. The result is shown in Fig. 3 as

a bar diagram in comparison with the experimental

DOS measured at 296 K [65]. While the shape of

the DOS predicted by the potential is qualitatively

correct, all frequencies are scaled 15% down with re-

spect to the experiment. The thermal expansion factor

a at room temperature is in good agreement with
experiment. Fig. 4 illustrates the temperature depen-

dence of the linear thermal expansion coefficient over

a wide temperature range. The melting temperature

of Fe has been computed by molecular dynamics sim-

ulations using the solid–liquid interface method. The

value obtained, Tm = 2135 K, overestimates the exper-

imental melting point 1811 K. Other Fe potentials give

Tm = 2358 K [12], 2060 K [17] and 1772 K [14]. In the
latter case, however, liquid properties were included in

the fit.
6. ADP results for Ni

The Ni structural energies calculated with the ADP

potential are in reasonable agreement with the LAPW
energies (Table 3). Table 5 compares ADP properties

of fcc-Ni with experimental data and with calculations
using the EAM potential [28]. Both the ADP and

EAM potentials are fit accurately to the experimental

elastic constants and the vacancy formation and migra-

tion energies [66,67]. The activation energies of self-dif-

fusion, Ef
v þ Em

v ¼ 2.97 eV (ADP) and 2.76 eV (EAM),

compare well with experimental data (2.88 eV [68]), the

ADP value being slightly more accurate. The self-inter-

stitial formation energies have been computed for three
different split-dumbbell orientations and the [111] orien-

tation has been found to be the most stable. The intrin-

sic stacking fault energy cSF is in good agreement with

experimental data (0.128 J/m2 [69]) and first-principles

calculations (0.145 J/m2 [70]). The unstable stacking

fault energy calculated along the ½�211�ð111Þ path com-

pares reasonably well with first-principles calculations

(0.269 J/m2 [70]). The ADP surface energies are in very
good agreement with experiment [69,71]. They also com-

pare very well with first-principles calculations, which

give 2.19, 2.35 and 1.93 J/m2 for the (100), (110) and

(111) orientations, respectively [72]. In contrast, the

EAM potential underestimates the surface energies,

which reflects the common problem of EAM potentials.

The improvement in the surface energies is due to the

angular-dependent interactions included in the ADP
potential.

The phonon DOS at 0 K has been calculated by

diagonalizing the dynamical matrix of a 7 · 7 · 7

(1372 atoms) supercell and constructing a distribution



Table 6

Properties of L12–Ni3Fe calculated with the ADP potential in

comparison with experimental data

Property Experiment ADP

a0 (nm) 0.3555a 0.35627

E0 (GPa) �4.5065

c11 (GPa) 230.4b 233.7

c12 (GPa) 144.4b 155.7

c44 (GPa) 119.2b 122.8

a Refs. [47,78].
b Ref. [77].
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of the normal vibrational frequencies. In comparison

with the experimental DOS measured at 293 K [65]

(Fig. 3), the shape of the DOS predicted by the

ADP potential is qualitatively correct but the high-fre-

quency peak is smeared and shifted towards higher

frequencies. The melting temperature of Ni computed
by molecular dynamics simulations is reasonably close

to the experimental value, especially with the EAM

potential. The ADP thermal expansion coefficient is

close to that calculated with the EAM potential but

both coefficients underestimate the experiment. Ther-

mal expansion was not included in the ADP fit but

was used, with a small weight, when constructing

the EAM potential [28]. Overall, despite some
improvement in the vacancy migration energy and in

surface energies, the incorporation of angular-depen-

dent interactions has not led to a drastic improvement

over the existing EAM Ni potential [28]. This confirms

the notion that Ni can be adequately described by reg-

ular EAM [28]. For the sake of consistency, our

Fe–Ni potential set is based on the new ADP Ni

potential.
7. ADP results for Fe–Ni compounds

The equilibrium formation energies of the Fe–Ni

compounds computed with the ADP potential are

compared with their LAPW counterparts in Fig. 1.

The B1–FeNi formation energy lies far beyond the scale

of these plots, but the agreement between the respective

ADP (0.55 eV) and LAPW (0.56 eV) energies is excel-

lent. Recall that only some of these compounds were

used in the ADP fit (Section 4) while the energies of
the other compounds are predictions of the potential.

The agreement between the LAPW and ADP calcula-

tions is very good. Both calculation methods identify

the same set of compounds that are most stable and

tend to group around the tie lines, namely, C11f–Fe2Ni,

L10–FeNi, L12–Ni3Fe, C11f–Ni2Fe and Ni7Fe. The high

stability of L10–FeNi is consistent with experimental

observations of this phase in meteorite samples
[2–4,47]. Furthermore, both calculations predict that

the C11f–compounds Fe2Ni and Ni2Fe could also be

observed at low temperatures. Note also that the forma-

tion energy of Ni7 Fe with the fcc-based Ca7Ge struc-

ture is also very low (lies on the Ni3Fe–Ni tie line in

both LAPW and ADP calculations), which is consistent

with the high solubility of Fe in fcc-Ni. This compound

was not included in the ADP fit.
Table 6 demonstrates that lattice properties of

L12–Ni3Fe predicted by the ADP potential compare

very well with experimental data. Given the fact that

no experimental data were used for fitting the Fe–Ni

interactions, this agreement points to a good transfer-

ability of the potential.
8. Discussion and conclusions

First-principles LAPW calculations have been per-

formed for a variety of crystal structures of Fe, Ni and

ordered Fe–Ni compounds. The L12–Ni3Fe compound
has the largest negative formation energy (Fig. 1) in

comparison with all other compounds calculated in this

work. This result is consistent with the experimental

phase diagram, which contains the c-phase based on this

compound in equilibrium with bcc-Fe and fcc-Ni at tem-

peratures below 620 K [1]. The formation energy of an-

other important compound, L10–FeNi, lies practically

on the tie line connecting Ni3Fe with bcc-Fe. This find-
ing is also in agreement with experimental observations

of this compound, known as the c00-phase, in meteorite

Fe–Ni alloys [2–4,47]. The c00-phase is assumed to be

metastable but very close to being truly stable [2]. Fur-

ther, the calculations predict that the Fe2Ni and Ni2Fe

compounds with the C11f structure are also relatively

stable, and therefore could also form at low tempera-

tures. To our knowledge, such compounds have not
been observed experimentally as bulk phases or precipi-

tates in Fe–Ni alloys. However, their stability revealed

by the calculations allows us to suggest that such com-

pounds could actually be found under certain experi-

mental conditions. They could also form in core

regions of grain boundaries or other lattice defects. A

search for such compounds may deserve special efforts

in the future.
Using the first-principles energy–volume functions

calculated in this work, as well as some experimental

data, we have developed a semi-empirical interatomic

potential intended for atomistic simulations of the

Fe–Ni system. Since the covalent component of bonding

can play a significant role in this system, we have chosen

an angular-dependent potential form, which we call

ADP. This form is a generalization of the EAM method
that additionally penalizes the total energy for dipole

and quadrupole distortions of local atomic environ-

ments. An ADP potential set has been generated by first

constructing potentials for pure Fe and pure Ni, fol-

lowed by fitting Fe–Ni cross-interaction parameters to

the energy–volume relations for some of the Fe–Ni com-

pounds. Thus, while the Fe and Ni potentials are based
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on both experimental and first-principles data, the cross-

interaction potential is fit to first-principles data only.

The ADP potentials obtained reproduce a large vari-

ety of properties of Fe and Ni (Tables 3–5) and the for-

mation energies of the Fe–Ni compounds (Fig. 1). The

Fe and Ni potentials have certain advantages over exist-
ing EAM potentials for these metals. The improvement

is due to the incorporation of first-principles data and

the use of an angular-dependent potential form. The

advantages of the ADP method are especially distinct

for bcc-Fe, where the role of angular-dependent interac-

tions is expected to be stronger than in Ni. It is the latter

recognition that has always motivated the pursuit of

angular-dependent potential forms for Fe, as well as
for other bcc transition metals such as Nb, Mo, Ta

and W [13,16–20,48–50]. Even if a regular EAM poten-

tial can provide the same or even better accuracy of fit to

a particular property, when a large set of properties is

considered, the ADP or other angular-dependent mod-

els are likely to lead to an overall better accuracy and

should be more robust in atomistic simulations.

It must be emphasized, however, that neither our
ADP nor any other Fe potential known to us correctly

predict the phase transformations from bcc to fcc with

temperature and then back to bcc before melting. These

transformations are governed by an interplay between

the thermal (i.e., associated with atomic vibrations)

and magnetic contributions to the free energy [73] and

can hardly be reproduced by traditional interatomic

potentials. In particular, the stability of the bcc structure
at low temperatures is due to its ferromagnetic ordering

and not to the stronger cohesion as postulated by all

potentials. Accordingly, the loss of stability of the bcc

structure at elevated temperatures (>1185 K) is caused

by the partial loss of its magnetic energy and not by

competition between the thermal free energies of the

bcc and fcc structures. One possible approach to model-

ing the phase transformations in Fe would be to include
the magnetic energy explicitly using some semi-empirical

model, for example by employing the Stoner model as it

was suggested by Krasko [74]. An alternative way would

be to make potential functions temperature-dependent

in order to reflect the temperature-dependent contribu-

tion of the magnetic energy. Before one of such ap-

proaches is implemented in the future, atomistic

simulations of Fe will have to be restricted to the bcc
phase.

As demonstrated by Fig. 1, the ADP potential cor-

rectly reproduces the phase stability trends across the

Fe–Ni system at 0 K. Both the ADP and LAPW calcu-

lations identify the same set of most stable compounds,

including the experimentally observed L12–Ni3Fe, the

metastable L10–FeNi, and the previously unknown

C11f compounds. Properties of the L12–Ni3Fe phase
predicted by the potential are in good agreement with

experimental data (Table 6).
Since our ADP Fe remains bcc at all temperatures

below the melting point, we cannot expect that the po-

tential will correctly reproduce the experimental phase

diagram. Nevertheless, exploratory grand-canonical

Monte Carlo simulations have been performed in a

few selected temperature-composition domains. The
fcc-based solid solution (c phase) has been found to ex-

ist at least up to 1600 K and to extend from pure Ni to

about 70 at.% Fe. The Fe-rich part of the diagram is

dominated by the bcc-a phase at all temperatures. This

phase dissolves up to 10 at.% Ni, depending on the

temperature. The Ni3Fe-based c 0-phase has been ob-

served below 800 K in equilibrium with either the c
or a phase. These features are in general agreement
with the experimental phase diagram, except for the

discontinuity of the c-phase field on the Fe-rich side.

Furthermore, low-temperature simulations have re-

vealed the formation of both the L10–FeNi compound

and the C11f phases, depending on the temperature,

composition and initial conditions of the simulations.

An exact reconstruction of the relevant low-tempera-

ture part of the phase diagram is computationally chal-
lenging and was not pursued in this work. We can

conclude, however, that the ADP potentials developed

in this work can be used for atomistic simulations of

the a-phase at relatively low temperatures and the

c-phase at all temperatures as long as it contains at

least 30 at.% of Ni.

This potential should be suitable for simulations of

plastic deformation, fracture and other processes in
model steels. In our ongoing work, it is applied to model

the grain boundary structure and segregation in fcc

Fe–Ni solid solutions at high temperatures. Simulations

of the dislocation core structure and motion in bcc Fe

are also in progress.
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Appendix

In the ADP method proposed in this work, the force

f c
i acting on atom i in a Cartesian direction c is given

by

f c
i ¼

X
j 6¼i

uc
ij þ wc

ij

h i
;

where the summation runs over all neighbors j of atom i.

Here,

uc
ij ¼ U0

sisj
ðrijÞ

rcij
rij

þ F 0
si
ð�qiÞq0

sj
ðrijÞ þ F 0

sj
ð �qjÞq0

si
ðrijÞ

h i rcij
rij
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is the standard force expression within regular EAM

and

wc
ij ¼ ðlc

i � lc
j ÞusisjðrijÞ þ

X
a

la
i � la

j

� �
u0sisjðrikÞ

rcijr
a
ij

rij

þ 2
X
a

kaci þ kacj

� �
wsisjðrijÞraij

þ
X
a;b

kabi þ kabj

� �
w0

sisj
ðrijÞ

raijr
b
ijr

c
ij

rij

þ 1

3
ðmi þ mjÞ w0

sisj
ðrijÞrij þ 2wsisjðrijÞ

h i
rcij

is the contribution of the angular-dependent forces. In

these expressions, la
i and kabi are the dipole and quadru-

pole tensors defined by Eqs. (3) and (4), respectively,

and mi is given by Eq. (5). The Greek superscripts denote

components of vectors and tensors relative to a

orthonormal Cartesian coordinate system. The prime
signifies differentiation with respect to the interatomic

distance rij.
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