# units command

## Syntax

```
units style
```

- style =
*lj*or*real*or*metal*or*si*or*cgs*or*electron*or*micro*or*nano*

## Examples

```
units metal
units lj
```

## Description

This command sets the style of units used for a simulation. It determines the units of all quantities specified in the input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this command is used at the very beginning of an input script.

For all units except *lj*, LAMMPS uses physical constants from
www.physics.nist.gov. For the definition of Kcal in real units,
LAMMPS uses the thermochemical calorie = 4.184 J.

The choice you make for units simply sets some internal conversion factors within LAMMPS. This means that any simulation you perform for one choice of units can be duplicated with any other unit setting LAMMPS supports. In this context “duplicate” means the particles will have identical trajectories and all output generated by the simulation will be identical. This will be the case for some number of timesteps until round-off effects accumulate, since the conversion factors for two different unit systems are not identical to infinite precision.

To perform the same simulation in a different set of units you must change all the unit-based input parameters in your input script and other input files (data file, potential files, etc) correctly to the new units. And you must correctly convert all output from the new units to the old units when comparing to the original results. That is often not simple to do.

For style *lj*, all quantities are unitless. Without loss of
generality, LAMMPS sets the fundamental quantities mass, sigma,
epsilon, and the Boltzmann constant = 1. The masses, distances,
energies you specify are multiples of these fundamental values. The
formulas relating the reduced or unitless quantity (with an asterisk)
to the same quantity with units is also given. Thus you can use the
mass & sigma & epsilon values for a specific material and convert the
results from a unitless LJ simulation into physical quantities.

- mass = mass or m
- distance = sigma, where x* = x / sigma
- time = tau, where t* = t (epsilon / m / sigma^2)^1/2
- energy = epsilon, where E* = E / epsilon
- velocity = sigma/tau, where v* = v tau / sigma
- force = epsilon/sigma, where f* = f sigma / epsilon
- torque = epsilon, where t* = t / epsilon
- temperature = reduced LJ temperature, where T* = T Kb / epsilon
- pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon
- dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau
- charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2
- dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2
- electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon
- density = mass/volume, where rho* = rho sigma^dim

Note that for LJ units, the default mode of thermodynamic output via the thermo_style command is to normalize all extensive quantities by the number of atoms. E.g. potential energy is extensive because it is summed over atoms, so it is output as energy/atom. Temperature is intensive since it is already normalized by the number of atoms, so it is output as-is. This behavior can be changed via the thermo_modify norm command.

For style *real*, these are the units:

- mass = grams/mole
- distance = Angstroms
- time = femtoseconds
- energy = Kcal/mole
- velocity = Angstroms/femtosecond
- force = Kcal/mole-Angstrom
- torque = Kcal/mole
- temperature = Kelvin
- pressure = atmospheres
- dynamic viscosity = Poise
- charge = multiple of electron charge (1.0 is a proton)
- dipole = charge*Angstroms
- electric field = volts/Angstrom
- density = gram/cm^dim

For style *metal*, these are the units:

- mass = grams/mole
- distance = Angstroms
- time = picoseconds
- energy = eV
- velocity = Angstroms/picosecond
- force = eV/Angstrom
- torque = eV
- temperature = Kelvin
- pressure = bars
- dynamic viscosity = Poise
- charge = multiple of electron charge (1.0 is a proton)
- dipole = charge*Angstroms
- electric field = volts/Angstrom
- density = gram/cm^dim

For style *si*, these are the units:

- mass = kilograms
- distance = meters
- time = seconds
- energy = Joules
- velocity = meters/second
- force = Newtons
- torque = Newton-meters
- temperature = Kelvin
- pressure = Pascals
- dynamic viscosity = Pascal*second
- charge = Coulombs (1.6021765e-19 is a proton)
- dipole = Coulombs*meters
- electric field = volts/meter
- density = kilograms/meter^dim

For style *cgs*, these are the units:

- mass = grams
- distance = centimeters
- time = seconds
- energy = ergs
- velocity = centimeters/second
- force = dynes
- torque = dyne-centimeters
- temperature = Kelvin
- pressure = dyne/cm^2 or barye = 1.0e-6 bars
- dynamic viscosity = Poise
- charge = statcoulombs or esu (4.8032044e-10 is a proton)
- dipole = statcoul-cm = 10^18 debye
- electric field = statvolt/cm or dyne/esu
- density = grams/cm^dim

For style *electron*, these are the units:

- mass = atomic mass units
- distance = Bohr
- time = femtoseconds
- energy = Hartrees
- velocity = Bohr/atomic time units [1.03275e-15 seconds]
- force = Hartrees/Bohr
- temperature = Kelvin
- pressure = Pascals
- charge = multiple of electron charge (1.0 is a proton)
- dipole moment = Debye
- electric field = volts/cm

For style *micro*, these are the units:

- mass = picograms
- distance = micrometers
- time = microseconds
- energy = picogram-micrometer^2/microsecond^2
- velocity = micrometers/microsecond
- force = picogram-micrometer/microsecond^2
- torque = picogram-micrometer^2/microsecond^2
- temperature = Kelvin
- pressure = picogram/(micrometer-microsecond^2)
- dynamic viscosity = picogram/(micrometer-microsecond)
- charge = picocoulombs (1.6021765e-7 is a proton)
- dipole = picocoulomb-micrometer
- electric field = volt/micrometer
- density = picograms/micrometer^dim

For style *nano*, these are the units:

- mass = attograms
- distance = nanometers
- time = nanoseconds
- energy = attogram-nanometer^2/nanosecond^2
- velocity = nanometers/nanosecond
- force = attogram-nanometer/nanosecond^2
- torque = attogram-nanometer^2/nanosecond^2
- temperature = Kelvin
- pressure = attogram/(nanometer-nanosecond^2)
- dynamic viscosity = attogram/(nanometer-nanosecond)
- charge = multiple of electron charge (1.0 is a proton)
- dipole = charge-nanometer
- electric field = volt/nanometer
- density = attograms/nanometer^dim

The units command also sets the timestep size and neighbor skin distance to default values for each style:

- For style
*lj*these are dt = 0.005 tau and skin = 0.3 sigma. - For style
*real*these are dt = 1.0 femtoseconds and skin = 2.0 Angstroms. - For style
*metal*these are dt = 0.001 picoseconds and skin = 2.0 Angstroms. - For style
*si*these are dt = 1.0e-8 seconds and skin = 0.001 meters. - For style
*cgs*these are dt = 1.0e-8 seconds and skin = 0.1 centimeters. - For style
*electron*these are dt = 0.001 femtoseconds and skin = 2.0 Bohr. - For style
*micro*these are dt = 2.0 microseconds and skin = 0.1 micrometers. - For style
*nano*these are dt = 0.00045 nanoseconds and skin = 0.1 nanometers.

## Restrictions

This command cannot be used after the simulation box is defined by a read_data or create_box command.

**Related commands:** none

## Default

```
units lj
```