pair_style spin/neel command


pair_style spin/neel cutoff
  • cutoff = global cutoff pair (distance in metal units)


pair_style spin/neel 4.0
pair_coeff * * neel 4.0 0.0048 0.234 1.168 2.6905 0.705 0.652
pair_coeff 1 2 neel 4.0 0.0048 0.234 1.168 0.0 0.0 1.0


Style spin/neel computes the Neel pair anisotropy model between pairs of magnetic spins:


where si and sj are two neighboring magnetic spins of two particles, rij = ri - rj is the inter-atomic distance between the two particles, eij = (ri - rj)/|ri-rj| is their normalized separation vector and g1, q1 and q2 are three functions defining the intensity of the dipolar and quadrupolar contributions, with:


With the functions g(rij) and q(rij) defined and fitted according to the same Bethe-Slater function used to fit the exchange interaction:


where a, b and d are the three constant coefficients defined in the associated “pair_coeff” command.

The coefficients a, b, and d need to be fitted so that the function above matches with the values of the magneto-elastic constant of the materials at stake.

Examples and more explanations about this function and its parametrization are reported in (Tranchida). More examples of parametrization will be provided in future work.

From this DM interaction, each spin i will be submitted to a magnetic torque omega and its associated atom to a force F (for spin-lattice calculations only).

More details about the derivation of these torques/forces are reported in (Tranchida).


All the pair/spin styles are part of the SPIN package. These styles are only enabled if LAMMPS was built with this package, and if the atom_style “spin” was declared. See the Making LAMMPS section for more info.