# fix langevin command

# fix langevin/kk command

## Syntax

```
fix ID group-ID langevin Tstart Tstop damp seed keyword values ...
```

ID, group-ID are documented in fix command

langevin = style name of this fix command

Tstart,Tstop = desired temperature at start/end of run (temperature units)

Tstart can be a variable (see below)

damp = damping parameter (time units)

seed = random number seed to use for white noise (positive integer)

zero or more keyword/value pairs may be appended

keyword =

*angmom*or*omega*or*scale*or*tally*or*zero**angmom*value =*no*or factor*no*= do not thermostat rotational degrees of freedom via the angular momentum factor = do thermostat rotational degrees of freedom via the angular momentum and apply numeric scale factor as discussed below*gjf*value =*no*or*vfull*or*vhalf**no*= use standard formulation*vfull*= use Gronbech-Jensen/Farago formulation*vhalf*= use 2GJ formulation*omega*value =*no*or*yes**no*= do not thermostat rotational degrees of freedom via the angular velocity*yes*= do thermostat rotational degrees of freedom via the angular velocity*scale*values = type ratio type = atom type (1-N) ratio = factor by which to scale the damping coefficient*tally*value =*no*or*yes**no*= do not tally the energy added/subtracted to atoms*yes*= do tally the energy added/subtracted to atoms*zero*value =*no*or*yes**no*= do not set total random force to zero*yes*= set total random force to zero

## Examples

```
fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 scale 3 1.5
fix 1 all langevin 1.0 1.1 100.0 48279 angmom 3.333
```

## Description

Apply a Langevin thermostat as described in (Schneider) to a group of atoms which models an interaction with a background implicit solvent. Used with fix nve, this command performs Brownian dynamics (BD), since the total force on each atom will have the form:

\(F_c\) is the conservative force computed via the usual inter-particle interactions (pair_style, bond_style, etc). The \(F_f\) and \(F_r\) terms are added by this fix on a per-particle basis. See the pair_style dpd/tstat command for a thermostatting option that adds similar terms on a pairwise basis to pairs of interacting particles.

\(F_f\) is a frictional drag or viscous damping term proportional to
the particle’s velocity. The proportionality constant for each atom is
computed as \(\frac{m}{\mathrm{damp}}\), where *m* is the mass of the
particle and damp is the damping factor specified by the user.

\(F_r\) is a force due to solvent atoms at a temperature *T*
randomly bumping into the particle. As derived from the
fluctuation/dissipation theorem, its magnitude as shown above is
proportional to \(\sqrt{\frac{k_B T m}{dt~\mathrm{damp}}}\), where
\(k_B\) is the Boltzmann constant, *T* is the desired temperature,
*m* is the mass of the particle, *dt* is the timestep size, and damp is
the damping factor. Random numbers are used to randomize the direction
and magnitude of this force as described in (Dunweg),
where a uniform random number is used (instead of a Gaussian random
number) for speed.

Note that unless you use the *omega* or *angmom* keywords, the
thermostat effect of this fix is applied to only the translational
degrees of freedom for the particles, which is an important
consideration for finite-size particles, which have rotational degrees
of freedom, are being thermostatted. The translational degrees of
freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

Note

Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time integration, this fix does NOT perform time integration. It only modifies forces to effect thermostatting. Thus you must use a separate time integration fix, like fix nve to actually update the velocities and positions of atoms using the modified forces. Likewise, this fix should not normally be used on atoms that also have their temperature controlled by another fix - e.g. by fix nvt or fix temp/rescale commands.

See the Howto thermostat doc page for a discussion of different ways to compute temperature and perform thermostatting.

The desired temperature at each timestep is a ramped value during the
run from *Tstart* to *Tstop*.

*Tstart* can be specified as an equal-style or atom-style
variable. In this case, the *Tstop* setting is
ignored. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable
will be evaluated each timestep, and its value used to determine the
target temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a time-dependent temperature.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom values, such as atom coordinates. Thus it is easy to specify a spatially-dependent temperature with optional time-dependence as well.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a “bias” from the atom velocities. E.g. removing the center-of-mass velocity from a group of atoms or removing the x-component of velocity from the calculation. This is not done by default, but only if the fix_modify command is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute commands to determine which ones include a bias. In this case, the thermostat works in the following manner: bias is removed from each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added back in.

The *damp* parameter is specified in time units and determines how
rapidly the temperature is relaxed. For example, a value of 100.0 means
to relax the temperature in a timespan of (roughly) 100 time units
(\(\tau\) or fs or ps - see the units command). The
damp factor can be thought of as inversely related to the viscosity of
the solvent. I.e. a small relaxation time implies a high-viscosity
solvent and vice versa. See the discussion about \(\gamma\) and
viscosity in the documentation for the fix viscous
command for more details.

The random # *seed* must be a positive integer. A Marsaglia random
number generator is used. Each processor uses the input seed to
generate its own unique seed and its own stream of random numbers.
Thus the dynamics of the system will not be identical on two runs on
different numbers of processors.

The keyword/value option pairs are used in the following ways.

The keyword *angmom* and *omega* keywords enable thermostatting of
rotational degrees of freedom in addition to the usual translational
degrees of freedom. This can only be done for finite-size particles.

A simulation using atom_style sphere defines an omega for finite-size spheres. A simulation using atom_style ellipsoid defines a finite size and shape for aspherical particles and an angular momentum. The Langevin formulas for thermostatting the rotational degrees of freedom are the same as those above, where force is replaced by torque, m is replaced by the moment of inertia I, and v is replaced by omega (which is derived from the angular momentum in the case of aspherical particles).

The rotational temperature of the particles can be monitored by the compute temp/sphere and compute temp/asphere commands with their rotate options.

For the *omega* keyword there is also a scale factor of
\(\frac{10.0}{3.0}\) that is applied as a multiplier on the
\(F_f\) (damping) term in the equation above and of
\(\sqrt{\frac{10.0}{3.0}}\) as a multiplier on the \(F_r\) term.
This does not affect the thermostatting behavior of the Langevin
formalism but insures that the randomized rotational diffusivity of
spherical particles is correct.

For the *angmom* keyword a similar scale factor is needed which is
\(\frac{10.0}{3.0}\) for spherical particles, but is anisotropic for
aspherical particles (e.g. ellipsoids). Currently LAMMPS only applies
an isotropic scale factor, and you can choose its magnitude as the
specified value of the *angmom* keyword. If your aspherical particles
are (nearly) spherical than a value of \(\frac{10.0}{3.0} =
3.\overline{3}\) is a good choice. If they are highly aspherical, a
value of 1.0 is as good a choice as any, since the effects on rotational
diffusivity of the particles will be incorrect regardless. Note that
for any reasonable scale factor, the thermostatting effect of the
*angmom* keyword on the rotational temperature of the aspherical
particles should still be valid.

The keyword *scale* allows the damp factor to be scaled up or down by
the specified factor for atoms of that type. This can be useful when
different atom types have different sizes or masses. It can be used
multiple times to adjust damp for several atom types. Note that
specifying a ratio of 2 increases the relaxation time which is
equivalent to the solvent’s viscosity acting on particles with
\(\frac{1}{2}\) the diameter. This is the opposite effect of scale
factors used by the fix viscous command, since the
damp factor in fix *langevin* is inversely related to the \(\gamma\)
factor in fix *viscous*. Also note that the damping factor in fix
*langevin* includes the particle mass in Ff, unlike fix *viscous*.
Thus the mass and size of different atom types should be accounted for
in the choice of ratio values.

The keyword *tally* enables the calculation of the cumulative energy
added/subtracted to the atoms as they are thermostatted. Effectively
it is the energy exchanged between the infinite thermal reservoir and
the particles. As described below, this energy can then be printed
out or added to the potential energy of the system to monitor energy
conservation.

Note

this accumulated energy does NOT include kinetic energy removed
by the *zero* flag. LAMMPS will print a warning when both options are
active.

The keyword *zero* can be used to eliminate drift due to the
thermostat. Because the random forces on different atoms are
independent, they do not sum exactly to zero. As a result, this fix
applies a small random force to the entire system, and the
center-of-mass of the system undergoes a slow random walk. If the
keyword *zero* is set to *yes*, the total random force is set exactly
to zero by subtracting off an equal part of it from each atom in the
group. As a result, the center-of-mass of a system with zero initial
momentum will not drift over time.

The keyword *gjf* can be used to run the Gronbech-Jensen/Farago time-discretization of the Langevin model. As
described in the papers cited below, the purpose of this method is to
enable longer timesteps to be used (up to the numerical stability
limit of the integrator), while still producing the correct Boltzmann
distribution of atom positions.

The current implementation provides the user with the option to output
the velocity in one of two forms: *vfull* or *vhalf*, which replaces
the outdated option *yes*. The *gjf* option *vfull* outputs the on-site
velocity given in Gronbech-Jensen/Farago; this velocity
is shown to be systematically lower than the target temperature by a small
amount, which grows quadratically with the timestep.
The *gjf* option *vhalf* outputs the 2GJ half-step velocity given in
Gronbech Jensen/Gronbech-Jensen; for linear systems,
this velocity is shown to not have any statistical errors for any stable time step.
An overview of statistically correct Boltzmann and Maxwell-Boltzmann
sampling of true on-site and true half-step velocities is given in
Gronbech-Jensen.
Regardless of the choice of output velocity, the sampling of the configurational
distribution of atom positions is the same, and linearly consistent with the
target temperature.

Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the Speed packages doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.

These accelerated styles are part of the GPU, USER-INTEL, KOKKOS, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Build package doc page for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input script.

See the Speed packages doc page for more instructions on how to use the accelerated styles effectively.

**Restart, fix_modify, output, run start/stop, minimize info:**

No information about this fix is written to binary restart files. Because the state of the random number generator is not saved in restart files, this means you cannot do “exact” restarts with this fix, where the simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted simulation should produce the same behavior.

The fix_modify *temp* option is supported by this
fix. You can use it to assign a temperature compute
you have defined to this fix which will be used in its thermostatting
procedure, as described above. For consistency, the group used by
this fix and by the compute should be the same.

The fix_modify *energy* option is supported by this
fix to add the energy change induced by Langevin thermostatting to the
system’s potential energy as part of thermodynamic output. Note that use of this option requires
setting the *tally* keyword to *yes*.

This fix computes a global scalar which can be accessed by various
output commands. The scalar is the cumulative
energy change due to this fix. The scalar value calculated by this
fix is “extensive”. Note that calculation of this quantity requires
setting the *tally* keyword to *yes*.

This fix can ramp its target temperature over multiple runs, using the
*start* and *stop* keywords of the run command. See the
run command for details of how to do this.

This fix is not invoked during energy minimization.

## Restrictions

For *gjf* do not choose damp=dt/2. *gjf* is not compatible
with run_style respa.

## Default

The option defaults are angmom = no, omega = no, scale = 1.0 for all types, tally = no, zero = no, gjf = no.

**(Dunweg)** Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

**(Schneider)** Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

**(Gronbech-Jensen)** Gronbech-Jensen and Farago, Mol Phys, 111, 983
(2013); Gronbech-Jensen, Hayre, and Farago, Comp Phys Comm, 185, 524 (2014)

**(Gronbech-Jensen)** Gronbech Jensen and Gronbech-Jensen, Mol Phys, 117, 2511 (2019)

**(Gronbech-Jensen)** Gronbech-Jensen, Mol Phys (2019); https://doi.org/10.1080/00268976.2019.1662506