Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

A Giri and JL Braun and PE Hopkins, JOURNAL OF APPLIED PHYSICS, 119, 235305 (2016).

DOI: 10.1063/1.4953683

We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films <= 3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm(-1). These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline. Published by AIP Publishing.

Return to Publications page