Dynamical properties of AIN nanostructures and heterogeneous interfaces predicted using COMB potentials

K Choudhary and T Liang and K Mathew and B Revard and A Chernatynskiy and SR Phillpot and RG Hennig and SB Sinnott, COMPUTATIONAL MATERIALS SCIENCE, 113, 80-87 (2016).

DOI: 10.1016/j.commatsci.2015.11.025

A new empirical variable charge potential has been developed for AlN within the third-generation charge optimized many-body (COMB3) potential framework. The potential is able to reproduce the fundamental physical properties of AlN, including cohesive energy, elastic constants, defect formation energies, surface energies and phonon properties of AlN obtained from experiments and first-principles calculations. The thermodynamic properties of the Al(111)-AlN (10 (1) over bar0) and Al2O3(0001)-AlN (10 (1) over bar0) interfaces and the tensile response of AlN nanowires and nanotubes are investigated in classical molecular dynamical (MD) simulations using this COMB3 potential. The results demonstrate that the potential is well suited to model heterogeneous materials in the Al-O-N system. Most importantly, the fully transferrable potential parameters can be seamlessly coupled with existing COMB3 parameters of other elements to enable MD simulations for an even wider range of heterogeneous materials systems. (C) 2015 Elsevier B.V. All rights reserved.

Return to Publications page