Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers

T Zhang and TF Luo, JOURNAL OF PHYSICAL CHEMISTRY B, 120, 803-812 (2016).

DOI: 10.1021/acs.jpcb.5b09955

Designing thermally conductive polymer is of scientific interest and practical importance for applications like thermal interface materials, electronics packing, and plastic heat exchangers. In this work, we study the fundamental relationship between the molecular morphology and thermal conductivity in bulk amorphous polymers. We use polyethylene as a model system and performed systematic parametric study in molecular dynamics simulations. We find that the thermal conductivity is a strong function of the radius of gyration of the molecular chains, which is further correlated to persistence length, an intrinsic property of the molecule that characterizes molecular stiffness. Larger persistence length can lead to more extended chain morphology and thus higher thermal conductivity. Further thermal conductivity decomposition analysis shows that thermal transport through covalent bonds dominates the effective thermal conductivity over other contributions from nonbonded interactions (van der Waals) and translation of molecules disregarding the morphology. As a result, the more extended chains due to larger persistence length provide longer spatial paths for heat to transfer efficiently and thus lead to higher thermal conductivity. In addition, rigid rod-like polymers with very large persistence length tend to spontaneously crystallize and form orientated chains, leading to a thermal conductivity increase by more than 1 order of magnitude. Our results will provide important insights into the design of thermally conductive amorphous polymers.

Return to Publications page