Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces

D Vanzo and M Ricci and R Berardi and C Zannoni, SOFT MATTER, 12, 1610-1620 (2016).

DOI: 10.1039/c5sm02179k

We have studied the wetting behaviour of liquid crystal nanodroplets deposited on a planar surface, modelling the mesogens with Gay-Berne ellipsoids and the support surface with a slab of Lennard-Jones (LJ) spherical particles whose mesogen-surface affinity can be tuned. A crystalline and an amorphous planar surface, both showing planar anchoring, have been investigated: the first is the (001) facet of a LJ fcc crystal, the second is obtained from a disordered LJ glass. In both cases we find that the deposited nanodroplet is, in general, elongated and that the contact angle changes around its contour. Simulations for the crystalline substrate show that the angle of contact turns reversibly from anisotropic to isotropic when crossing the clearing transition. As far as we know this is a novel, not yet explored effect for thermotropic liquid crystals, that we hope will stimulate experimental investigations.

Return to Publications page