Positron lifetime calculation for possible defects in nanocrystalline copper

K Zhou and T Zhang and Z Wang, PHYSICA SCRIPTA, 90, 105701 (2015).

DOI: 10.1088/0031-8949/90/10/105701

Structural models for dislocation, vacancy clusters, twin boundary, stacking fault and nanocrystalline sample are constructed using copper as a model material. Positron lifetimes and momentum distributions of annihilating electron-positron pairs are calculated for these structural models. The calculated results indicate that the dislocation, twin boundary and stacking fault are shallow traps to positrons. The dislocation associated with monovacancies gives rise to a positron lifetime similar to that of monovacancies. The calculated positron lifetimes of the nanocrystalline copper show no dependence on the mean grain size. The as-constructed nanocrystalline samples contain vacancy clusters in grain boundaries, and positrons are localized by the vacancy clusters. However after relaxation the samples show only other two kinds of free volumes: one is the interatomic space in grain boundaries which is a shallow trap to positrons; the other is similar to a monovacancy. The latter contributes a positron lifetime of about 163 ps. This kind of free volume is not only observed in grain boundaries but also in the regions near grain boundaries. Positron lifetime calculation combined with the momentum distribution calculation is useful to identify the defect in the nanocrystalline

Return to Publications page