Entropy Content During Nanometric Stick-Slip Motion

P Creeger and F Zypman, ENTROPY, 16, 3062-3073 (2014).

DOI: 10.3390/e16063062

To explore the existence of self-organization during friction, this paper considers the motion of all atoms in a systems consisting of an Atomic Force Microscope metal tip sliding on a metal slab. The tip and the slab are set in relative motion with constant velocity. The vibrations of individual atoms with respect to that relative motion are obtained explicitly using Molecular Dynamics with Embedded Atom Method potentials. First, we obtain signatures of Self Organized Criticality in that the stick-slip jump force probability densities are power laws with exponents in the range (0.5, 1.5) for aluminum and copper. Second, we characterize the dynamical attractor by the entropy content of the overall atomic jittering. We find that in all cases, friction minimizes the entropy and thus makes a strong case for self-organization.

Return to Publications page