The surprisingly high activation barrier for oxygen-vacancy migration in oxygen-excess manganite perovskites

JM Borgers and RA De Souza, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 22, 14329-14339 (2020).

DOI: 10.1039/d0cp01281e

The current description of oxygen-vacancy behaviour in (La,Sr)MnO(3 )perovskite-type oxides, though widely accepted, ignores a pronounced discrepancy. Values of the activation enthalpy of oxygen-vacancy migration reported in experimental investigations (Delta H-mig,H-v= 1.2-2.4 eV) are substantially higher than those predicted in computational work (Delta H-mig,H-v= 0.5-1.0 eV). In this study we examine the origin of this discrepancy using molecular-dynamics simulations. Specifically we investigate the effect of various cation defects (Sr substituents, La vacancies, Mn vacancies, both types of cation antisites) on the diffusivity of oxygen vacancies (D-v) in orthorhombic LaMnO3. Our results indicate that the presence of cation vacancies can bring the computational values of Delta H(mig,v)into good agreement with experimental data. Applying an analytical model to our results, we predict that isothermal values ofD(v)in manganite perovskites containing cation vacancies will depend strongly on oxygen partial pressure (contrary to the standard assumption). The implications of our results for modelling the point-defect chemistry of, and oxygen diffusion in, manganite perovskites are discussed.

Return to Publications page