Aneesur Rahman

- 864 Lennard-Jones atoms on CDC 3600 computer
- 780 timesteps, 45 sec/step
- Irving Langmuir Prize - 1977
- American Physical Society (APS) Computational Prize is named in Aneesur’s honor

1927-1987
What’s new in LAMMPS

Steve Plimpton
Sandia National Labs
sjplimp@sandia.gov

4th LAMMPS User Workshop
August 2015 - Albuquerque, NM
Thanks

- **Paul Crozier** has “died” (ok, took a management position)
- **Jeff Greathouse, Matt Lane, Stan Moore, Ray Shan, Aidan Thompson** - co-organizers
- **Phyllis Rutka and Val Romero** - administrative support
Thanks

- **Paul Crozier** has “died” (ok, took a management position)
- **Jeff Greathouse, Matt Lane, Stan Moore, Ray Shan, Aidan Thompson** - co-organizers
- **Phyllis Rutka and Val Romero** - administrative support

- **Invited speakers** (some from a long distance!)
 - **Eduardo Bringa** (Argentina)
 - **Stephen Foiles** (Sandia)
 - **Andres Jaramillo-Botero** (Caltech)
 - **Fabio Pavia** (EPLF and Ansys, Switzerland)
 - **Jim Larenztos and Brian Barnes** (ARL)
 - **Gary Grest** (Sandia)
 - **Christoph Kloss** (DCS Computing, Austria)
Thanks

- Paul Crozier has “died” (ok, took a management position)
- Jeff Greathouse, Matt Lane, Stan Moore, Ray Shan, Aidan Thompson - co-organizers
- Phyllis Rutka and Val Romero - administrative support

Invited speakers (some from a long distance!)
- Eduardo Bringa (Argentina)
- Stephen Foiles (Sandia)
- Andres Jaramillo-Botero (Caltech)
- Fabio Pavia (EPLF and Ansys, Switzerland)
- Jim Larenzotos and Brian Barnes (ARL)
- Gary Grest (Sandia)
- Christoph Kloss (DCS Computing, Austria)

- DOE/NNSA ASC - funding for facility/equipment rentals
- Materials Design - providing lunches!
- Scienomics - providing snacks and drinks!
Social activities

2 dinners & tram ride:

3 recreational choices:
Thanks to our user community

- August is a **hot** month to visit ABQ and NM!
August is a **hot** month to visit ABQ and NM!

Who has **traveled** from foreign countries?
August is a **hot** month to visit ABQ and NM!

Who has **traveled** from foreign countries?

LAMMPS is healthy (developers may not be):

2014 stats:

- 32K downloads, 7K mail list postings, lots of papers
August is a **hot** month to visit ABQ and NM!

Who has **traveled** from foreign countries?

LAMMPS is healthy (developers may not be):

2014 stats:

32K downloads, 7K mail list postings, lots of papers

Thanks for your enthusiasm for LAMMPS and for helping us make the code more useful and reliable!
Thanks to our user community

- August is a **hot** month to visit ABQ and NM!
- Who has **traveled** from foreign countries?

- LAMMPS is healthy (developers may not be): 2014 stats:
 32K downloads, 7K mail list postings, lots of papers

- **Thanks for your enthusiasm for LAMMPS and for helping us make the code more useful and reliable!**

- Please talk to LAMMPS developers whenever/wherever you can find us. Or just send us an email.
New interatomic potentials (pair styles)

- **Comb3** with polarization effects
 - U Florida groups of Sinnott and Phillpot
 - metals, oxides, hydrocarbons
- **Ziegler-Biersack-Littmark (ZBL)**
 - Stephen Foiles and Aidan Thompson (Sandia)
 - strong short-range repulsions
 - can be added to other potentials via pair hybrid
- **Peridynamics**
 - Rezwanur Rahman talk (Fri 8:30 AM), UT Austin
 - new viscoelastic and elastic/plastic models
- **Soft segmental repulsive potential (SRP)**
 - Tim Sirk (ARL)
 - prevents bond-crossing in DPD polymer chains
- **QEq** charge equilibration
 - Ray Shan talk (Wed 2:15 PM), Sandia
 - matrix and damped dynamics methods via fix qeq
 - can be added to other potentials (ReaxFF,COMB,etc)
 - with coul/streitz and EAM, enables Streitz-Mintmire potential
New “quantum-accurate” potentials

- Goal is to be as good as DFT for some systems, at a fraction of the cost
- Derived from “big data” archives of DFT results

QUIP
- Albert Bartok (Cambridge U)
- Interface to their QUIP MD code
- Variety of potentials including GAP

SNAP
- Aidan Thompson talk (Thu PM breakout A1), Sandia
- New potential for tantalum
Two polarization models

In addition to fix qeq (fluctuating charge) and COMB3 pair style ...

- **Adiabatic core/shell model**
 - Hendrik Heenan (Technical University of Munich)
 - CORESHELL package
 - crystalline materials

- **Thermalized Drude dipole model**
 - Alain Dequidt (Clermont University, France),
 with Julien Devemy and Agilio Padua
 - USER-DRUDE package
 - molecular systems and fluid states

- **Helpful docs**
 - doc/Section_howto.html: 24, 25, 26
 - doc/tutorial_drude.html
Two path-integral MD (PIMD) options

- Quantum MD via Feynman path integral method for quantum effects like tunneling
- One atom \Rightarrow ring polymer of P quasi-beads, equivalent to QM partition function

Fix pimd command

- Chris Knight & Yuxing Peng (U Chicago)
- uses multi-replica partitioning within LAMMPS
- scales nicely to large systems and machines

Fix ipi command

- Michele Ceriotti (EPFL)
- i-PI Python package performs PIMD
- LAMMPS called as client (via sockets) to compute forces/energies
Acceleration packages

- **Kokkos package**
 - Christian Trott, Stan Moore, Ray Shan (Sandia)
 - support for GPUs, Xeon Phi, OpenMP
 - 31 pair styles, some bonded styles, no PPPM (yet)
 - Stan talk (Thu 9:30 AM)

- **Intel package**
 - Mike Brown talk (Wed 3:15 PM), Intel
 - support for Xeon Phi, optimization for Intel CPUs
 - 5 pair styles, no PPPM (yet)

- **GPU package**
 - Mike Brown and Trung Nguyen (ORNL)
 - support for GPUs
 - 43 pair styles, PPPM

- **USER-OMP package**
 - Axel Kohlmeyer (Temple U)
 - 103 pair styles, 29 fixes, PPPM, Verlet & rRESPA
 - most bonded styles and PPPM variants

- **USER-CUDA package** being deprecated for Kokkos
All packages now usable via one build command

Example:
```bash
Make.py -p gpu -gpu mode=single arch=31
-o gpu -a lib-gpu file mpi
```

Use same input script with any package:

Example:
```bash
mpirun -np 48 -ppn 12 lmp_gpu -sf gpu -pk gpu 2
-in in.script
```
USER-DIFFRACTION package

- Shawn Coleman talk (Thu 9:45 AM), ARL
- Compute X-ray and electron diffraction patterns
- Bulk Ni example:

VisIt package for visualization
USER-LB package for Lattice-Boltzmann

- Colin Denisston group (U Western Ontario)
- Venkat Bala poster (Fri 10:30 AM), UWO
- Particles in background Lattice-Boltzmann fluid
- MD particles influenced by hydrodynamic forces

- Biopolymer filtration, Phys Rev Lett 112, 118301 (2014)
- GPU version for LB now available (contact Colin)
USER-SMD package = SPH for solids

- Georg Ganzenmueller (Ernst Mach Institute, Germany)
- Stable, quadratic convergence, various material models
Other new user packages

- **USER-FEP package**
 - Agilio Padua (Universite Blaise Pascal Clermont-Ferrand)
 - free-energy perturbation with soft potentials
 - fix adapt/fep command and several pair styles

- **USER-QMMM package**
 - Axel Kohlmeyer (Temple U)
 - couple LAMMPS with DFT using Quantum Espresso
 - LAMMPS performs MD algorithm, BC, constraints, etc
 - QE called to compute QM forces (subset of atoms and procs)
 - could be generalized to other DFT codes

- **USER-QTB package**
 - Yuan Shen, Tingting Qi, and Evan Reed (Stanford)
 - quantum nuclear effects (low temperatures, heat capacity)
 - fix qtb and fix qbmsst commands
Monte Carlo options

MC only, or MC moves interspersed with MD
Paul Crozier (Sandia), Aidan Thompson talk (Fri 9:15 AM)

- **Fix gcmc command**
 - Atomic/molecular insertions/deletions, rotate, displace
 - Supports all pair styles, KSpace
 - Local or global energy evaluation

- **Fix atom/swap command**
 - Metropolis MC for surface relaxation
 - Swaps atom types, displaces atoms

- **Fix tfmc command**
 - Kristof Bal (U Antwerp, Belgium)
 - Force-biasing to enable longer timescales
 - E.g. chemical vapor deposition onto surface
New **molecule** command reads molecule template file
- coords, atom types, bond topology (angles, dihedrals, etc)
- center of mass, moment of inertia
 for overlapping finite-size particles

Input to other commands:
- `create_atoms` (with molecules)
- molecule insertion: `fix gcmc`, `fix deposit`, `fix pour`
- `fix rigid/small`

See doc/molecule.html for details
Invoke Python code from your input script

In addition to Python scripts calling LAMMPS ...

- New **python command** defines a Python function
 - Function can be in-lined in input script or in a file
 - Pass LAMMPS variables to Python, values returned
 - Associate function with **python-style variable**
 - Python function invoked whenever variable is evaluated
 - Immediate in input script (parameter for command)
 - Every N steps during a simulation when fix requests it
 - Function can **callback** into LAMMPS (e.g. grab atom coords)

- **Why?**
 - Make input script into a **real programming language:**
 complex looping, branching, etc
 - Compute values more complex than LAMMPS variables allow
 - Easier way to add functionality than C++ coding
 - assuming it’s not a time-critical operation

- See doc/Section_python.html for details
New chunk commands

- General way to compute quantities for subsets of atoms
- **Chunk** = atoms in spatial bin, molecule, same atom type, etc
- More generally, chunks can be set by any atom property, output of per-atom compute or atom-style variable
 - atoms in local clusters
 - atoms within velocity windows
 - atoms with similar potential energy
 - atoms with same local defect structure
- **Compute chunk/atom** assigns chunk ID to each atom
 - one-time or dynamically (e.g. as clusters change)
- **Compute */chunk** commands calculate per-chunk values
 - count, sum of atom property, COM, MSD, etc
- **Fix ave/chunk** time averages & outputs per-chunk values
- See doc/Section howto 23 for overview
Miscellaneous input/output enhancements

- **Read_data command**
 - can now be used multiple times
 - allows building of system, component by component
 - e.g. substrate, adsorbed molecule, solvent

- **Write_data command**
 - write out a data file for current configuration
 - replaces old restart2data program

- **MPIIO package** for parallel I/O
 - Paul Coffman (IBM)
 - read/write of dump and restart files
Load-balancing via RCB

- RCB = recursive coordinate bisectioning
- Assigns same number of (weighted) atoms per processor
- See balance and fix balance commands
- Often needed for coarse-grained models
 - DPD, SPH, Peridynamics, granular, etc

- Worked to reduce comm with 26 neighbors to 6+ (for 3d)
2d SPH “water” flowing over a dam
Georg Ganzenmueller (Ernst Mach Institute, Germany)
Load-balancing examples for soft and hard materials

2d SPH “water” flowing over a dam
Georg Ganzenmueller (Ernst Mach Institute, Germany)

Atomic microlattice of metal struts
Alex Stukowski (Tech Univ Darmstadt)
- star imbalance = 18x
- 13x speed-up for 21M atoms on 16K cores
Give us your input on LAMMPS development plans

- Come to **breakout A2** on Thurs PM
- Variety of topics will be discussed
- User ideas/feedback is welcomed
- Volunteer your expertise & coding effort
Give us your input on LAMMPS development plans

- Come to **breakout A2** on Thurs PM
- Variety of topics will be discussed
- User ideas/feedback is welcomed
- Volunteer your expertise & coding effort

- If you can’t make it, just **send us an email**