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Material deformation and failure occurs at various length scales: 
• Brittle and ductile fracture 
• Dislocation activity 
• Grain boundary sliding 
• Stiction, friction and wear 

(Bulatov, Tang  
& Zbib; 2001 ) 

(Pferner; 1999) 

Continuum mechanics-based models to predict failure have been very 
effective at various length scales (10-4 – 102 m) but can/should they work at 
the nanoscale? 
 

Our premise: 
•  Define consistent fields from molecular simulation 
•  Continuum theory 

I.e. first connect atomistics to continuum fields in a manner consistent with 
balance laws, then use continuum theory to analyze the process. 

nanoscale 
results 

Motivation: Continuum mechanics at the nanoscale 
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Figure 7.  A cross-sectional SEM image of several voids and cavities at different length scales in a single necked 

tensile bar.  Contrast is due to electron channeling, which provides details on the subgrain morphology.  To 
obtain this image, a backscattered electron detector was used with a 15 keV electron beam at a working distance 

of 4 mm. 

(Boyce; 2012 ) 



Hardy (Journal of Chemical Physics, 1982) - 
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Atomistic-Continuum formulation of R.J. Hardy 

Thermal variables (heat flux, temperature) are also part of this formulation.   

Now that we have these tools, what can we do with them… ? 



•  Objective: Characterize the defects that form during uniaxial tension of a 
NC-Ta thin film, and use continuum fields to connect their generation to 
locally “measured” critical stresses. 

•  Simulation details:  
•  EAM by Li et al. (Phys. Rev. B, 2003) 
•  Simulations done with LAMMPS (http://lammps.sandia.gov)  
•  Geometry: thin film of dimensions 34.5 nm x 34.5 nm x 7 nm 
•  3 columnar grains of size 20 nm with random orientations 
•  Approximately 464,000 atoms 
•  Equilibration via heating to 1700K for 200 ps, 

 then cooling to 300K for 200 ps,  
 using a Nosé-Hoover thermostat 

•  Uniaxial stress applied at strain rates 105 to 109 sec-1 

Deformation of nanocrystalline Ta 



Deformation of nanocrystalline Ta 

•  First active mechanism is dislocation emission from grain boundaries: 

!! =106 sec-1

4.5% strain 5% strain 6% strain 

4.5% strain 5% strain 

•  Cauchy stress expression can be 
used to correlate local 
evaluations of stress (Von Mises) 
with defect nucleation sites. 

•  Stresses where defects form are 
significant in some places, but not 
in others. 

•  Emission events may indicate 
‘weak spots’ on grain boundaries. 



Material frame balance laws: 

Densities: 

Substitute densities into balance laws and do a lot of math… 

Material frame version of Hardy formulation 



Resulting variables 



•  Simulations show consistency between σ and P instantaneously in time. 
 

•  Both σ and transformed P show consistency with system virial, but 
display a larger range of variation (± 0.3 GPa after 300,000 timesteps [300 
ps] of equilibration). 

Volume expansion of 1% at 100K and zero pressure 

!"

!"#$

!"#%

!"#&

!"#'

!%

!%#$

!%#%

!%#&

!( !$((((( !%((((( !&((((( !'((((( !)*+(&

,
-.
*
,
,
!/
0
1
2
3

-45*,-*6

17)
829:;<
=4.42>

!"

!"#$

!"#%

!"#&

!"#'

!%

!%#$

!%#%

!%#&

!( !$((((( !%((((( !&((((( !'((((( !)*+(&

,
-.
*
,
,
!/
0
1
2
3

-45*,-*6

78)91:)9;<

=2>?@A
B4.42C

Is P consistent with Hardy’s Cauchy stress? 



Quasi-static analysis shows: 
•  path independency of J integral 
•  agreement with LEFM for Harmonic material 
•  fracture occurs when J = 2γ for materials of 

finite strength 
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J-integral analysis for quasi-static crack initiation  

J = S !N
"0

# ds = W0N$F
T !P !N( )

"0

# ds
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J-integral for ductile crack propagation 

FCC Au 
• EAM potential by Foiles et al. 
(1986) 

• Emission of <112> type partial 
edge dislocations along {111} 
planes 

• Formation of stacking faults 
• JRice = 1.27 < Jc = 1.95 [J/m2] 

[00-1] 

[110] 

[100] 

[01-1] BCC Fe 
• EAM potential by Simonelli et 
al. (1993) 

• Emission of <111> type full 
edge dislocations along {211} 
planes 

• No stacking faults 
• JRice = 6.56 > Jc = 2.87 [J/m2] 
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J-integral for ductile crack propagation 
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FCC Au 
• Dislocation emission occurs at J = 1.25 J/m2  

• After emission, J-integral exhibits a jump of 
0.29 J/m2, then recovers.  

• Second dislocation emission occurs at a 
marginally higher J and also displays near-
immediate recovery. 

BCC Fe 
• Dislocation emission occurs at J = 3.42 J/m2  

• After emission, J-integral exhibits a jump of 
0.20 J/m2; J remains at it’s new, lower level. 

• Second dislocation emission occurs at a 
significantly higher value of J = 3.78 J/m2. 



� At finite temperatures, stress and deformation are conjugates of the free 
energy. Thus, the J-integral must be defined as… 

J = ! N" FT #P #N( )
$0

% ds = J = ! N" HT #P #N( )
$0

% ds

� Free energy Ψ is difficult to calculate directly. Instead, we choose to 
approximate it with the Quasi-Harmonic (QH) approach: 
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� We further use the Local-Harmonic (LH) simplification of QH that depends on 
a localized (diagonal) version of the dynamical matrix: 

!LH ="0 +
kBT
V!

log !
kBT

#

$
%

&

'
(

3

det DLH( )
#

$
%
%

&

'
(
(

DLH =
1
m

!2"
!u0!u0

J-integral formulation at finite temperature 



J-Integral analysis for finite temperature  
crack initiation 

� Using thermalization of a sequence of minimized states with far field loading, 
we obtain fields that show localization together with thermal noise: 

•  Zero temperature annulus of atoms used to enforce LEFM BCs. 
•  Fields are time-averaged over a period of 40 ps (105 samples). 



J-Integral retains path independence 
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•  Path independence at both 100 and 300K. 
•  J decreases with increasing T due to thermal compression reducing 

effective stress intensity factor. 
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