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a b s t r a c t

Molecular dynamics (MD) study of martensitic transformation (MT) in nickel and aluminum alloy is per-
formed. The behavior focused on is transformation between crystalline structures from B2 cubic cell to
body-centered tetragonal cell, which is simply realized by uniaxial tensile loading. The potential function
used is Finnis–Sinclair type having only single energy minimum where B2 structure exists. The availabil-
ity of this specific many-body potential for stress-induced MT phenomena under uniaxial loading is fully
discussed. In MD simulations, martensite phase is induced by tensile stress or strain in the atomic system,
as predicted by a potential energy map. It is understood that the characteristic of the potential energy
function with regard to deformation is crucial for MT studies and investigating energy-strain or stress–
strain map is worthwhile. The MT behavior in the atomic system occurs during a plateau region of
stress–strain (S–S) curve of the whole specimen, that is typical for experimental superelastic or shape-
memory alloys under uniaxial loading. It is found that, during each MT event, large jump of atomic strain
is observed. Owing to single energy minimum, the atomic system shows almost perfect recovery in S–S
curve, where the graph comes completely back to initial state after unloaded. Besides, the present paper
focuses on surface effect for MT behavior. Since the surface effect is dominant in MT phenomena espe-
cially in microscopic specimens, a novel computational scheme for stabilizing condition in which uniaxial
loading is always applied together with arbitrary periodic boundary condition(s) is devised. By comparing
one-, two-, and three-dimensional models under uniaxial loading, it is recognized that the nucleation
behavior depends strongly on the existence of free surface region (including corner edge). When there
is no surface, a chaotic nucleation of martensite is observed. On the other hand, the free surface induces
first martensite because of less constraint in tensile deformation of unit cells. It is confirmed that the ten-
dency toward MT nucleation corresponds to yield stress or strain of the specimen. In order to define and
detect martensite structure as for each atom, an atomic strain measure (ASM) with our own formation is
introduced. It is shown that the ASM is very effective to distinguish martensite bct unit structure from
others.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Martensitic transformation (MT) is recognized as an important
mechanism which appears in many engineering functional materi-
als, such as shape memory alloys (SMA), superelastic alloys,
strengthened steel, and organic/inorganic polymers. One notewor-
thy physical nature of MT is its reversible shape change. A good
ll rights reserved.

echanical Engineering, Kansai
80, Japan. Tel.: +81 6 6368

toh).
itoh/nano/index-e.html (K.

Permanent address is Kansai
example can be found in materials made of SMA which recover
their original shape through heating and cooling. Because of this
property, SMAs have been utilized in many engineering fields, such
as for surgical purposes and advanced aerospace applications.
Experiments have well revealed that this reversibility takes place
across all length-scales (sub-lm, lm, mm, cm, m, etc.). Now, we
know that it is due to the MT mechanism. The reversibility of these
alloys sometimes leads to superelasticity in which the material
undergoes extremely large deformations in the elastic regime.

This paper focuses on surface effect in MT. In order for the
material to complete MT, nucleation and propagation of new phase
are required. It is well known that nucleation in inhomogeneous
structure (inhomogeneous nucleation) is easier than that in homo-
geneous condition. In actual material, many inhomogeneous struc-
tures around interface made by precipitates structure, grain
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boundary, twin boundary, dislocation, or free surface become a
nucleation site. Subsequent propagation of new phase may be af-
fected by these inhomogeneous structures.

The MT mechanism has been investigated extensively by many
researchers and there have been a number of attempts to clarify
that mechanism. MT is categorized as a non-diffusive, or displa-
cive, phase transformation, in which atomic movement is confined
to interatomic lengths. The two stable crystalline phases are called
austenite and martensite. That is, during MT, atoms move slightly
while keeping their connectivity already established within the
crystal unit. This behavior is responsible for complete recovery of
shape and it differs from dislocation or slip motion usually found
in plastic deformation. In fact, the reversible behavior of the actual
materials can be observed visibly. Thus, we can expect an experi-
mentally deduced continuum constitutive law to predict mechan-
ical behavior and want it to be immediately applicable to industrial
design [1]. However, the geometrical variety of specimens and the
broad range of mechanical conditions in experiment tend to make
this deduction quite uncertain. Thus, we should establish our
understanding through atomistic theory. Since the essence of MT
is atomic-scale movement, some pioneering works [2,3] have
pointed out the importance of a theory from atomic-scale.

In this study, therefore, we use molecular dynamics (MD) sim-
ulations. The MD simulation is the insightful method to capture
atomistic collective behavior in the process of transformation.
For Ni–Al systems, a number of potential functions have been pro-
posed so far. Indeed, electronic density calculations based on quan-
tum mechanics are straightforward and very effective. But their
performance is poor for the simulation of nonlinear dynamic prob-
lem of moving atoms, which is quite crucial for MT phenomena.
Accordingly, a classical but semi-empirical approach such as EAM
[4] is thought to be optimum.

The thermodynamic theory of Ginzburg and Landau, which is
based on transition of free energy, is adopted to the phase field
model succeeds in the study of nucleation in MT phenomena
[5,6]. However, there exists obscureness between free energy and
atomic energy, where the former is directly connected to thermo-
dynamics while the latter is derivable from interatomic potential
functions. It seems that the nonlinear dynamic response of atomic
systems under mechanical loading or unloading has not been stud-
ied in previous frameworks. Nonlinear dynamics of atomic systems
is effectively investigated by MD simulations, but, due to computa-
tional limitation and technical immaturity, this problems has not
been researched extensively [7–14]. Most of MD studies so far
applying periodic boundary condition just show a limited aspect
of atomic dynamics as for MT. By changing boundary conditions
in MD simulation, we will be able to evaluate the surface effect
on MT. Even though the researchers sometimes use model with
free surface, they did not fully, in the author’s knowledge, discuss
the surface effect on MT.

In the present paper, we investigate nickel–aluminum (Ni–Al)
binary alloys undergoing MT. A recent interesting discovery is that
computations predict Ni–Al alloys to be capable of showing recov-
erable phase transformation in a specimen with nanometer-scale
dimensions [9]. The study adopts a wire-shape specimen which
has the largest surface ratio and showed clear phase boundaries
between martensite and austenite. It is certain that surface plays
an important role. Besides, behavior of atoms at four edges of spec-
imen with rectangular cross-section is interesting because they
have a coordination number remarkably less than that in flat
surface.

According to the phase diagram of Ni–Al binary system, there
are some stoichiometric choices: NiAl (B2 or L10 structure),
Ni3Al ðL12 structureÞ;NiAl3, etc. In the present paper, we focus on
structural transformation between B2 (body-centered cubic) and
L10 (face-centered cubic) in Ni–Al alloys, which is similar to the
Bain relation between bcc and fcc structures. Clapp et al. referred
to this transformation of Ni–Al alloys along with a discussion of po-
tential functions [8,15]. Since a stable phase is actually found at
tetragonal bct structure, it should be referred as ‘‘cubic-to-tetrago-
nal” phase transformation.

Thus, our objective is to understand atomistic behavior in
stress-induced transformation and to discuss about its dependence
on free surface (surface effect). For this aim, we propose technically
two new methods. First, we introduce a loading/unloading tech-
nique for uniaxial tensile tests with variable periodicity in MD sim-
ulations. Because of the ambiguous definition of free energy in MD
simulations, thermal effects are not considered in the present pa-
per. This is why we focus especially on stress-induced transforma-
tion. We show that the surface state altered by periodic conditions
enormously changes the results. In the second place, in order to
distinguish the crystal phase from the simulated atomic coordi-
nates, we devise an atomic strain measure (ASM). We discuss the
implication of ASM and show the general formulation in an expres-
sion applicable to MD simulations. To consider atomic-scale value
based on continuum notion will be meaningful in connecting the
atomistic behavior with the continuum mechanics.

This paper is organized as follows: first, in the following section,
we evaluate the ideal energy of crystal structures under homoge-
neous deformation using an EAM potential utilized here. We dis-
play the procedure to treat the MT problem in MD simulations,
and show the detailed computational model and its conditions.
Then, we show and discuss the results of MD simulation. Finally,
we arrive at our conclusion.

2. Theory and method

2.1. Martensite and austenite phases in Ni–Al: definition of martensitic
transformation

We start with our definition of crystal phases necessary to de-
tect martensitic transformation (MT) in Ni–Al alloys [16]. Metallur-
gically, these two phases are specified as martensite and austenite.
The crystal structure of Ni–Al systems has been studied metallur-
gically by using experimental techniques and recently by using
theoretical quantum calculations [17]. For Ni-rich compositions,
intermediate crystalline structures such as 7 M or 14 M can be
found in addition to martensite and austenite [18]. However, stoi-
chiometric compositions used in interatomic potential functions
developed for these alloys are normally bound to 50:50 (Ni–Al;
B2 or L10 structure may exist) or 75:25 (Ni3Al; L12 structure may
exist), because the crystal structure must be defined in smaller
units. Inhomogeneous arrangements of atoms typical in defect
structures should be considered because they are necessarily in-
cluded in real materials and may be the first place to trigger phase
transformation. Unfortunately, the capability of typical interatomic
potentials for alloys does not reach the point where it can directly
capture such inhomogeneous situations. Thus, we should begin by
capturing the essential features of MT through investigation of rel-
atively regular arrangements along with existing potential func-
tion. Especially for MT, it makes good sense to do this because
atoms should migrate in a displacive manner, which means the
transformation tends to be carried out within the basic crystal
cells. For these reasons, we focus on the B2 (austenite)! L10 (mar-
tensite) transformation, which is almost identical to the Bain cor-
respondence between bcc and fcc in monoatomic (metallic)
systems. This transformation framework in Ni–Al alloy systems
makes it easy to analyze microscopic strain in MT, because it only
contains uniaxial deformation. In other words, in this study it is as-
sumed that the transformation is not a shear-type but a tensile/
compressive-type. This MT mechanism is shown graphically in
Fig. 1. By stretching the c-axis ½001�, the B2 (body-centered) struc-
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Fig. 1. Crystallography of martensite transformation from B2 structure to L10 structure in Ni–Al alloy.
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ture changes to the L10 (face-centered) structure. Crystallographi-
cally, Miller’s index of orientation, ½uvw�bc , defined in the original
body-centered structure (B2) converts into ½uvw�fc in the face-cen-
tered structure (L10), using column vectors, as follows:

u

v

w

2
64

3
75

fc

¼ 1
2

1 1 0
�1 1 0
0 0 2

0
B@

1
CA

u

v

w

2
64

3
75

bc

; ð1Þ

where z-direction is chosen to be the stretching direction. It is
important to note that the stretching of the c-axis accompanies
shrinkage in the a- and b-axes so that the volume per atom is re-
tained. In other words, generally the B2! L10 transformation has
not only a stretching strain along the c-axis but also a negative
strain along the a- and b-axes. In the present paper, the loading
direction is prescribed to z hereafter. If the shrinkage in the trans-
verse directions (x; y) are shorter or larger than that expected to
complete the Bain relation, the unit structures stays at bct (body-
centered tetragonal) or shifts toward fct (face-centered tetragonal).
Even in these cases, the driving force for MT is always found uniax-
ially along the stretched c-axis. Therefore, our MD simulation
boundary condition for MT is required to realize this uniaxial con-
dition, which we discuss in later sections.
Table 1
Properties for B2 structure reproduced by interatomic potential by Yan et al. [20].

Property Property Unit EAM [20] Experiment [20]

Lattice constant a0 nm 0.288 0.2887
Cohesive energy Ec eV 4.52 4.52–4.77
Elastic constant C11 1011 Pa 2.115 2.115
Elastic constant C12 1011 Pa 1.426 1.426
Elastic constant C44 1011 Pa 1.138 1.122
Inverse of compliance 1=S11 1011 Pa 0.9662 –
Cutoff length rc nm 0.496 –
2.2. Potential functions for Ni–Al and their characteristics in
homogeneous deformation

There exist several potential functions for Ni–Al systems. For
example, they can be found in literature those proposed by Voter
and Chen [19], Yan et al. [20], Foiles and Daw [21], Rubini and Bal-
lone [22], Farkas et al. [23,24], Ludwig and Gumbsch [25], and Oz-
gen and Adiguzel [11]. However, there still exists room for further
development to include first-principle quantum calculations. At
present, we assume that the EAM (embedded atom method) [4]
is a suitable framework of potential function for MD analysis. This
is because time-evolving many-body dynamics simulations pro-
vide with insightful information of collective motions in atomic
system. Also, even though the thermal (kinetic) effect is not men-
tioned in this paper, a simulation at finite temperature is essential.
By using strict quantum calculation, activation energy of MT
behavior can be captured by seeking the most probable route,
but this is not adequate enough to recognize the transformation
behavior because there may exist multiple routes of transforma-
tion due to the many-body nature, collective motion or kinetic
effect.

The total energy of an atomic system expressed by the EAM is

E ¼
X

i

FiðqiÞ þ
1
2

X
j

/ijðrijÞ
( )

; ð2Þ
where rij is the distance between atoms i and j, FiðqiÞ is the embed-
ded function of electron density, qi, which is defined at the site of
the i atom. We adopt one of the EAM potential functions shown
above. The potential we use is that proposed by Yan et al. [20]
which is constructed by proper fitting to crystal energy of B2 struc-
ture and its mechanical properties. It is formulated along with the
embedding function of the Finnis–Sinclair type [26], which is ex-
pressed by the square root of the electron density at the site of
interest. Table 1 shows the basic properties of the B2 structure
which are reproduced by this potential. The reader can refer to ori-
ginal literature for further information of formulation and availabil-
ity of this potential [20].

For this potential, the authors [20] mentioned that the energetic
minimum can be found for the B2 structure but not for the L10

structure. However, it should be noted that their results are limited
by constant volume, so we seek energy variation with an optimum
shrinkage along a- and b-axes (a- and b-axes are equivalent in this
case). An energy-deformation map obtained for this potential is
displayed and compared in Fig. 2.

As mentioned above, stretching along the c-axis (see positive
domain in e1: vertical axis of the graph) results in shrinkage along
the a- and b-axes (see negative domain in e2: horizontal axis of
the graphs). In Fig. 2, the energy minimum curve, which is ob-
tained by optimizing the a- and b-axes to give the lowest energy
for the prescribed c-axis length, is shown by the dot-and-broken
line, connecting points as A! B! C! D and A! E. This EAM
potential shows only a single minimum exactly at point
A : ðe1; e2Þ ¼ ð0;0Þ.

The volume-conserving deformation route shown by the bro-
ken line in Fig. 2 deviates from the energy minimum curve,
which means that the crystal energy during deformation with
conserved volume does not guarantee minimum energy. In a sta-
tic sense, i.e. without thermal fluctuation, we expect that the
structure changes along the path of minimized energy. Fig. 3
shows the energy change along the energy minimum curve of
Fig. 2. The EAM potential we use shows only one well at the
B2 structure and, at the same time, it shows some degradation
in gradient around c=a ¼ 1:3. Müller [27] pointed out that, by
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using a common tangent to the convex parts in a free energy
curve like Fig. 3, the loaded body prefers the tangent value. This
is because for a given stretch (i.e. fixing at a certain c=a in Fig. 3)
the tangent provides a lower energy than the curve itself. This
leads to the possibility that this EAM potential in a loaded state
exhibits martensite structure at the point denoted by ‘‘BCT” in
Fig. 3.

Next, we discuss the relation between force (stress) and struc-
ture. The mechanical response of the atomic system under MT is
well represented by the stress–strain relation estimated by the
interatomic potential function. In an atomic system, due to its dis-
crete nature, complete accordance with continuum stress (Cauchy
stress) is difficult, but atomic stress can be used successfully so far.
By averaging atomic stress over the whole system and, if needed,
over the time line, we will get satisfactory estimation comparable
with continuum stress, though some approximations are neces-
sary. In the present study, the atomic stress tensor of individual
atoms is calculated using effective pairwise approximation of the
EAM [28] as follows:
rab ¼ 1
N

XN

i¼1

1
2Xi

X
j2neighbor

@/effðrÞ
@r

����
r¼rij

ra
ijr

b
ij

rij

" #
; ð3Þ

where /effðrÞ is the effective pairwise potential formulated from Eq.
(2), ra

ij is the difference vector between atoms i and j, Xi is an atomic
volume allocated to atom i, and N is the total number of atoms in
the system. Greek indices (a;b; . . . ¼ 1;2;3Þ denote Cartesian com-
ponents. The normal components of the stress tensor are denoted
by r11;r22;r33 or rx;ry;rz. Since the atomic volume changes in
the course of deformation, the value of Xi should be modified, but
we use a constant value for atomic stress calculation. This changes
the absolute value of atomic stress, but does not affect the zero-
stress (balanced) condition.

Fig. 4 shows the stress-deformation map of the crystal under
the same homogeneous deformation as used in Fig. 2, where a nor-
mal stress component in the stretching direction (rz) is shown. The
bundle of contour lines divides the whole area into positive rz and
negative rz. That is, these bundles almost correspond to the zero-
stress (rz ¼ 0) curve. The volume-conserving curve and the mini-
mum energy curve are shown in the figure as well. Obviously, all
of the lines intersect at the origin ðe1; e2Þ ¼ ð0;0Þ. Note that the
zero-stress curves for rz do not match with the minimum energy
curve, because rz presents the energy gradient only in the partic-
ular direction. In the deformed state, it makes sense that not all
of the components of stress vanish. Fig. 5 shows normal stress
components rx;ry and rz obtained along the energy minimum
curve. It is verified that only the tensile component, rz, varies
whereas components in other directions vanish. That is, the energy
minimum curve completely coincides with the zero-stress of trans-
verse stress, rx;ry. In these figures, the atomic volume modified
along with stretching of the crystal is compared with that not mod-
ified. The local maximum point (rz; ez) is (4.7 GPa, 0.17) for this
EAM potential, where ez is calculated by c=c0 � 1, and c0 is the ori-
ginal length of the c-axis. Moreover, local minimum point (rz; ez) is
(2.8 GPa, 0.28). The notion of crystalline stability in the case of
stretch in the [001] direction of a cubic crystal was reviewed by
Milstein [29] and is helpful. In Milstein’s discussion, the first and
third zero-stress denote stable crystal phases. As explained by
Fig. 5b, it is easily understood that the graph with three-zero fea-
tures naturally satisfies the condition of multiple stable structures.
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This idea can be expanded to the graph with the one-zero case (ex-
actly this potential’s case: Fig. 5a). A certain applied stress exerted
from outside (e.g. by strain constraint) pulls the balance line up so
as to intersect with the one-zero graph at multiple points. Physi-
cally, this means that a certain amount of stress is required to
maintain the alternative structure (martensite) in using this EAM
potential.

2.3. Analyzing deformation using atomic strain measure

Martensitic transformation (MT) is categorized into the group of
displacive transformation, which is with small displacement of
atoms. Therefore, the deformation under MT is captured inside
the basic crystal unit as shown in Section 2.1. In SMA alloys, either
the microscopic twinning–detwinning mechanism or the Bain-
type transformation from bcc to fcc is thought to be owing to
MT. Basically the transformation should be free from topological
change of atomic connectivity.

In order to comprehend the deformation under MT, it is useful
to introduce a strain measure at the atomic scale. As can be found
in ordinary solid mechanics textbooks, strain is a continuum no-
tion and is defined by infinitesimal segments between material
points. This conceptual fact makes it involved to define a strain
measure in atomic system. However, if a homogeneous deforma-
tion field can be assumed, this value has the same physical mean-
ing as the continuum strain. For example, the reader can refer to
earlier work done by Mott et al. [30] and Buehler et al. [31] Thus,
our purpose here is to seek a formulation of atomic strain measure
(ASM) suitable for MD simulations of MT behavior. The ASM pro-
posed by us is described below. The continuum definition of
Green’s strain measure tensor eab is a prototype. In a continuum
description of a body, the difference in the squared length of a
the line segment measured before and after deformation is given
by

dxadxa � dXadXa ¼ 2dXaeabdXb
; ð4Þ

where a and b indicate components (a; b ¼ 1;2;3) with the summa-
tion convention applied. Xa and xa are reference and current posi-
tion vectors, respectively. The d in front of X or x indicates an
infinitesimal value. When the deformation is small enough, the
strain tensor in a continuum body is given by

eab ¼ 1
2

@ua

@Xb þ
@ub

@Xa

� �
; ð5Þ
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where ua ¼ uaðXÞ is the displacement evaluated at the undeformed
point X ¼ ðX1;X2;X3Þ.

We derive a definition of atomic strain measure for an atomic
system, referring to Eq. (5). Instead of using infinitesimal segments,
strain measure of atomic system can be defined for interatomic
segments denoted by vector between atoms i and j,

ra
ij ¼ ra

j � ra
i : ð6Þ

As explained in Fig. 6, following the continuum expression Eq.
(4), the difference in the interatomic distance between atoms i
and j measured before and after deformation is expressed by,

ra
ijr

a
ij � ra

ijð0Þra
ijð0Þ ¼ 2ra

ijð0Þe
ab
ij rb

ijð0Þ; ð7Þ

where variables with ‘‘(0)” are those of the original (undeformed)
value, which conceptually correspond to the X variables in a contin-
uum definition. If the deformation gradient field Fab can be defined,
it should be,

Fab ¼
@ra

ij

@rb
ijð0Þ

: ð8Þ

Then, the strain measure given by Eq. (7) becomes

eab
ij ¼

1
2

FcaFcb � dab
� �

; ð9Þ
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where dab is Kronecker’s delta notation. We introduce the displace-
ment of the line segment ua

ij ,

ua
ij ¼ ra

ij � ra
ijð0Þ ¼ ðra

j � ra
i Þ � ðra

j ð0Þ � ra
i ð0ÞÞ

¼ ðra
j � ra

j ð0ÞÞ � ðra
i � ra

i ð0ÞÞ; ð10Þ

which is calculated by individual atomic time-evolution. Using the
relation, Eq. (10), for the deformation gradient, Eq. (8), the detailed
form of Eq. (9) becomes as follows:

eab
ij ¼

1
2

@ua
ij

@rb
ijð0Þ
þ

@ub
ij

@ra
ijð0Þ

þ
@uc

ij

@ra
ijð0Þ

@uc
ij

@rb
ijð0Þ

 !

� 1
2

@ua
ij

@rb
ijð0Þ
þ

@ub
ij

@ra
ijð0Þ

 !
: ð11Þ

The last equation is justified for small deformations.
The expression (11) is ideal for defining the strain concerning

the line segment ra
ij but is not useful for computation, because

the denominators are just a component of the interatomic vector
which can be zero. By postulating some assumptions for Eq. (11),
we avoid the divergent nature. First, we assume that the displace-
ment field of a segment ra

ij depends primarily on interatomic length
rij. Assuming that it depends on the initial value rijð0Þ, the deriva-
tive in Eq. (11) is given by

@ua
ij

@rb
ijð0Þ

�
@ua

ij

@rijð0Þ
@rijð0Þ
@rb

ijð0Þ
¼

@ua
ij

@rijð0Þ
rb

ijð0Þ
rijð0Þ

: ð12Þ

In addition, as explained in Fig. 6c, we assume that the displace-
ment ua

ij and interatomic displacement rijð0Þ have a linear relation,
that is, @ua

ij=@rijð0Þ � ua
ij=rijð0Þ. Then, the derivative is given by

@ua
ij

@rb
ijð0Þ

�
ua

ij

rijð0Þ
rb

ijð0Þ
rijð0Þ

: ð13Þ

The dependence of strain on interatomic distance rijð0Þ is rea-
sonable because the contribution from relatively nearby atoms
should be dominant. The contributions are smaller for the distant
atoms. A linear relation between displacement and distance is a
strong assumption which is correctly supported only for homoge-
neous deformation. The final form of atomic strain measure for the
interatomic segment ra

ij is given by

eab
ij ¼

1

2ðrijð0ÞÞ2
ua

ijr
b
ijð0Þ þ ub

ijr
a
ijð0Þ

h i
: ð14Þ

In Eq. (14), all of the components except for ua
ij or ub

ij, have been
calculated from the reference (undeformed) atomic configuration,
ra

i ð0Þ. The displacements, ua
ij and ub

ij, must be calculated from the
current atomic positions.

In order to evaluate strain at individual atomic sites, Eq. (14) is
simply averaged over the neighboring atoms which the atom i
interacts with, as follows:

eab
i ¼

1
Nneighbor

XNneighbor

j¼1

eab
ij ; ð15Þ

where Nneighbor is the number of neighbors. This is how the ‘‘atomic
strain measure (ASM)” of atom i is defined. In this formulation, even
if the displacement between distant neighbors is larger, the ASM is
always scaled by the distance, rijð0Þ. If we need to examine the
strain in the very vicinity of an atom, we may confine interaction
to a certain cutoff distance. This expression is effective for estimat-
ing lattice distortion which occurs during MT.

Despite the deficiency due to the simple assumptions of homo-
geneous deformation and linear relation between displacement
and distance, the merit is generous instead. In order to check if
an adequate evaluation of strain is possible, we calculate ASM val-
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ues using Eq. (15) for the ideal crystal structure of B2. Under peri-
odic condition, uniaxial and homogeneous stretching along the c-
axis (z-direction) is applied. The contraction in the transverse
direction (x- or y-direction) is estimated by the volume-conserving
condition. Table 2 shows the correspondence between the applied
strain and the calculated atomic strain measure. Since the lattice
constant of the reference structure is a0 ¼ 0:2887 nm, the cutoff
length of 0.3000 nm is chosen in order to include up to second
neighbors. An almost linear relation between the applied strain,
ez, and the estimated atomic strain measure, e33

i is obtained. In-
deed, eab

i defined by Eq. (15) involves contribution from atoms lo-
cated in the inclined direction and those atoms tend to reduce the
calculated value. But, referring to the relation in Table 2, the vol-
ume ratio calculated by ð1þ e11

i Þð1þ e22
i Þð1þ e33

i Þ results in almost
unity with small error. That is, the volume-conserving condition is
also true for the ASM components in this case.

From the Bain relation or the relation between energy and
deformation described in Section 2.2, martensite structure of Ni–
Al alloy will appear in the range, 1 < c=a <

ffiffiffi
2
p
¼ 1:41. In this range

the ASM shows a remarkably small error less than 0.01%. In our MD
calculation, by using an ASM component e33

i together with a crite-
rion e33

cr , we can detect the martensite phase in atom-by-atom ba-
sis. It is assumed that e33

cr ¼ 0:06—0:10 ð6—10%Þ, which
corresponds to c=c0 ¼ 1:08—1:30. It is important to note that the
ASM does not quantitatively provide exact value of strain but
rather qualitatively shows difference between crystalline states.
Roughly speaking, the actual strain is three times larger than the
ASM values.

2.4. Uniaxial straining of molecular dynamics cell with varying surface
effect

In order to carry out martensitic transformation in the Ni–Al
system, uniaxial loading along the c-axis is required for the MD
simulation box (MD simulation cell). At the same time, by applying
free surface conditions in the transverse directions, it is possible to
model a very narrow nanowire structure. As experimental facts,
the interface between the parent crystal and the hard inclusion,
free surfaces or grain boundaries provides with trigger sites for
nucleation of transformation in the alloys. In other words, inhomo-
geneity in the structure is important for nucleation of transforma-
tion. However, the nanowire-shape is presumed to be with too
much outcome of transformation as revealed in the literature [9].
At this point, it is necessary to introduce a boundary condition
by which the surface effect is controllable. The leftmost picture
in Fig. 7a shows an ordinary boundary condition for tensile loading
of the MD cell. In order to maintain periodicity in transverse direc-
tions (x, y, or both), it is necessary to place imaginary and periodic
cells in these directions (this is just referring to usual periodic
boundary condition). However, since at the same time the
Table 2
Relation between atomic strain measure proposed here and applied strain; Homogeneous s
is stretched along the c-axis (in zð¼ 33Þ direction) with the volume held constant. The lattic
can be calculated by using V=V0 ¼ ð1þ e11

i Þ
2ð1þ e33

i Þ. c0 is the initial length of c-axis. A st

Stretch Atomic strain measure

c=c0 c=a e11
i e33

i

0.95 0.93 0.008 �0.017
0.99 0.99 0.002 �0.003
1.00 1.00 0.000 0.000
1.01 1.02 �0.002 0.003
1.05 1.08 �0.008 0.017
1.10 1.15 �0.016 0.033
1.20 1.31 �0.029 0.067
1.26 1.41 �0.036 0.087
1.30 1.48 �0.041 0.100
stretched crystal strives to perform Poisson’s contraction, prede-
termined cell lengths in periodic directions will cause additional
residual stress in the cell. This problem seems to have been re-
solved by well-known MD technique with constant-pressure
ensemble (NPT) or the constant-stress ensemble (NST). However,
these methods often result in no ignorable oscillation of the cell
length due to immediate response to imbalance in stress compo-
nent. This unrealistic behavior will spoil MT analysis in the MD
simulation.

The remedy suitable for our present purpose is as follows:

1. In the loading direction, the cell length steadily increases with
the prescribed strain rate _�I (i.e. strain increases by
D�ab ¼ _�IDt during a time increment Dt. The superscript ‘‘ab”
implies the loading direction). At the same time, the atomic
coordinates are subject to strain corresponding to cell length.

2. In directions other than the loading direction, the cell length is
modified with another prescribed strain rate _�II so as to reduce
difference between current stress and targeted one.

When the targeted and current stresses are rab
0 and rab respec-

tively, the change in strain during each time increment Dt is given
by

D�ab ¼
�sgnðrab � rab

0 Þ _�IIDt ðjrab � rab
0 j > gÞ

0 ðjrab � rab
0 j 6 gÞ

(
ð16Þ

(a component ‘‘ab” implies non-loading direction) where g is a cer-
tain criterion by which the stress component can be recognized as
almost equal to the targeted value.

The former action 1 means control of strain in the loading direc-
tion, whereas the latter action 2 means structural relaxation in the
other directions. The latter action 2 may be called the ‘‘stabilizing
condition”. The increment of strain tensor D�ab is applied to both
atomic coordinates ra

i ði ¼ 1 � NÞ and cell length la, so that

ra�
i ¼ ðd

ab þ D�abÞrb
i

la� ¼ ðdab þ D�abÞlb;
ð17Þ

where variables with an asterisk are the modified value. In the pres-
ent study, shear deformation is not considered and off-diagonal
components in the strain tensor D�ab are omitted as zero. We are
going to show the general case including shear deformation in fur-
ther study. These procedures are explained schematically in Fig. 7b.
By using a finite strain rate _�II as well as _�I , atoms in the simulation
box are allowed to equilibrate with gradually varying strain at each
stage. Meanwhile, the system obtains the targeted stress value. By
using this technique, even when the specimen is in a high stress
state, it is possible to bring the system to any specified stress state,
rab

0 . This also enables unloading simulation which starts from a cer-
tain loaded state. Table 3 shows the relation between boundary
train is applied to ideal and periodic structure. The reference crystal is B2 structure. It
e constant in B2 is 0.2887 nm and the cutoff distance is 0.30 nm. The volumetric error
retched bct structure may be also regarded as a compressed fct structure.

Volume error cf. Corresponding structure

V=V0 � 1

0.000 bct (Compressed)
0.000 bct (Compressed)
0.000 B2:bcc
0.000 bct (Stretched)
0.000 bct (Stretched)
0.001 bct (Stretched)
0.006 bct (Stretched)
0.009 L10:fcc
0.012 fct (Stretched)
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conditions and mechanical processes. Whatever periodicity the
model has, uniaxial loading is achieved by using the new ‘‘stabiliz-
ing” condition together with the loading condition. The one-dimen-
sional (1D), two-dimensional (2D), and three-dimensional (3D)
periodic uniaxial boundary conditions are possible as shown in
Fig. 7a.

2.5. Molecular dynamics model of Ni–Al alloy with uniaxial
deformation

The computation model of Ni–Al alloy for MD simulation is
shown in Fig. 8. Conditions of calculation are shown in Table 4.
In the direction of tensile loading (z-direction), the periodic condi-
tion is always applied to the specimen. In order to assess the sur-
face effect on MT, three models are considered which have
different conditions in the two directions other than the tensile
Table 3
Relation between boundary conditions and mechanical processes; x- and y-directions are e
is shown. ‘‘Periodic” refers to the standard periodic boundary condition. ‘‘Free” means that t
realize compressive loading.

Boundary condition

x y z

Periodic Periodic Periodic
Stabilizing Stabilizing Loading
Stabilizing Stabilizing Stabilizing
Free Stabilizing Loading
Free Stabilizing Stabilizing
Free Free Loading
Free Free Stabilizing

* ‘‘Loading” could be either tensile or compressive.

σ11

σ 33

σ11

σ 33

σ 33

ε11ε11
ε11

ε33

σ11= 0

= 0

= 0

= 0

>0

= 0= 0 = 0

>0

atom
atom

atom

>0

: strain : stress

loading

(A) loading without transverse strain (B) load

Fig. 7. Uniaxial loading condition with
direction. The detail of the models are listed in Table 4. At the free
surfaces, the model is always terminated with nickel atoms, so the
composition of nickel is larger than that of aluminum except in the
case of the 3D periodic model. All structures start from the B2 aus-
tenite phase, where the tensile direction coincides with the ½001�bc

crystalline orientation. This is because the crystal is expected to
produce tetragonal (bct) structure from B2 structure by stretching
in the orientation shown in Fig. 1.

Temperature control which utilizes the velocity scaling scheme
is applied to the model at all times, where atomic velocities are slo-
wed down so that the system temperature does not exceed 10 K.
The reason why the temperature of the system is kept at such a
low constant is that, while we do not fully discuss thermally in-
duced MT, we need some thermal fluctuation for dynamics. Before
loading, the structure is equilibrated by using the ‘‘stabilizing”
technique described in the previous section. ‘‘Stabilizing” is per-
quivalent and exchangeable. As mentioned in the text, the new ‘‘stabilizing condition”
here are free surfaces in that direction. Reversing the direction of tensile loading would

Periodical dimension Mechanical process

3D NVT or NVE Ensemble
3D Uniaxial loading
3D Relaxation or unloading
2D Uniaxial loading
2D Relaxation or unloading
1D Uniaxial loading
1D Relaxation or unloading

σ11

σ 33

ε33

ε11

σ 33ε33

σ11

ε11

ing / unloading with transverse strain

>0

>0

atom

<0 0

loading

atom

0

<0 0

<0
>0

unloading

controllable periodicity of unit cell.
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Table 4
Calculation conditions.

Property Unit Value(s)

1D Model 2D Model 3D Model

The number of atoms 33,640 32,800 32,000
The number of Ni atoms 17,640 16,800 16,000
The number of Al atoms 16,000
Elementary cell size (x� y� z) nm 5:774� 5:774� 1:1548
Initial lattice constant a0 nm 0.2887
Controlling temperature K 10.0
Strain rate �I (to stretch) 109 1/s 3.0 (in z direction)
Strain rate �II (to control stress) 109 1/s 0.1–10.0 (2D: in y-direction,

3D: in x- and y-directions)
Numerical integration scheme 4-Value Gear method
Time increment fs 2.0
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formed with the condition in which targeted stresses of rx;ry;rz

are all zero. The standard strain rate for tensile loading is
_�I ¼ 3:0� 109 1/s. Other values, 1:0� 1010 1/s (fast case) or
1:0� 109 1/s (slow case) have been checked, but the change in
behavior is negligible.

First, tensile loading in the z-direction is applied. Then, the load-
ing is stopped at an arbitrary point where the specimen has not yet
broken but has sufficiently transformed. The point of this stoppage
is found in the computed stress–strain curve of the whole speci-
men. After that, the specimen is unloaded under the stabilizing
condition until the stress component in the loading direction rz

becomes zero.

3. Results and discussion

3.1. Stress change in loading and unloading of one-dimensional
periodic case: check of reversibility

Stress components r11ð¼ rxÞ;r22ð¼ ryÞ;r33ð¼ rzÞ;r12;r23;r31

averaged over the whole atomic system are plotted with regard
to the total strain in the loading direction e33ð¼ ezÞ of the specimen,
as shown in Fig. 9. That is, this is the uniaxial stress–strain curve
(S–S curve) of the specimen. Fig. 9 shows the graph for the 1D
periodic case. Strain ez is estimated by the relation,
ez ¼ ðlz � lzð0ÞÞ=lzð0Þ, where lz and lzð0Þ are current and undeformed
cell lengths in the loading direction, respectively. Only rz varies
with strain, which means that the present boundary condition
for uniaxial loading works very well. The component rz increases
with strain showing a linear elastic response. However, before
yielding takes place at point B in the graph, there exists some deg-
radation of the gradient near point A. The broken lines denoted by
S1 and S2 are guides for the gradients. Line S2 reveals that the
gradient is about 47 GPa. This is smaller than the inverse value of
a compliance calculated by, 1=S11 ¼ ðC11 � C12ÞðC11 þ 2C12Þ=
ðC11 þ C12Þ ¼ 96:62 GPa, as in Table 1. However, line S1, which is
fit to the curve at the very beginning of loading, shows that the
gradient is about 100 GPa, which agrees well with the theoretical
value of 1=S11. Basically, elastic constant of the atomic system orig-
inates from the curvature of the present interatomic potential
function at equilibrium interatomic spacing, that is, for very small
strain. Therefore, it is understood that the decrease of the overall
gradient represented by S2 is due to non-linearity of the potential
function and is reasonable.

Further straining after yielding produces a plateau region from
point B to point D in Fig. 9, where an approximately constant stress
is applied to the specimen during deformation. Interestingly, de-
spite the stress level being quite different, the total shape of the
computed S–S curve resembles those obtained by experiment on
macro-sized specimens [32]. Experiments reveal that the specimen
undergoes MT within this plateau region. At point E, the specimen
begins to break. The stress and strain relation from D to E is almost
linear, which means the crystal behaves in elastic manner again.
The gradient (1=S11) of line S3 is 113 GPa, which is larger than
those found in the earlier stages. It is understood that the first
(O! B) and the second (D! E) linear responses correspond to
the elastic response of complete austenite and martensite struc-
tures, respectively. Since the strain ez ¼ 0:35 is large enough to cre-
ate martensite units (bct) which has already been specified in
Section 2.2 and Fig. 3, the final linear response is identified as for
a martensite phase. This leads to the fact that MT emerges between
these two elastic regions. In order to see whether the strain, stress,
and structure are reversible or not, tensile loading is stopped dur-
ing the final elastic response. Fig. 10 shows the stress–strain
(rz � ez) curves which include the curve of unloading as well as
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0.06 and 0.10 is the domain of transition according to Table 2. Applied strain value
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that of loading. The results shows complete reversibility with
unloading and the hysteresis is very small. The elastic curve be-
tween ez ¼ 0—0:12 is traced back perfectly. The present EAM po-
tential has only one minimum, the structure seems to be
straightforwardly driven back to the energetic minimum point.

In the following analyses, we mainly describe the forward
transformation mechanism from austenite phase to martensite
one. Of course, the reverse transformation from martensite to aus-
tenite would show slight discrepancy in nucleation and propaga-
tion behaviors. However, since S–S curves for forward and
reverse transformation match well, averaged behavior of reverse
transformation is similar to forward one.

3.2. Evaluation of martensite detected by atomic strain measure

The atomic strain measure (ASM) corresponds to shape change
between B2 and L10 structures as shown in Table 2. Therefore, it is
used as a criterion for detecting MT. Fig. 11 shows distribution of
ASM component e33

i of the 1D periodic model for sequential time
steps in the loading simulation. With no strain, a sharp peak occurs
at zero which obviously corresponds to the austenite phase (de-
noted by A). Then, as the external load increases, the peak emerges
at greater strain (the peak moves to the right in the graph). It is
found that, during transition, the peak of austenite (A) jumps to an-
other peak which corresponds to martensite (denoted by M). The
new peak (M) can be found at e33

i > 0:10.
As specified in Section 2.3, the transition should take place over

the domain e33
cr ¼ 0:06—0:10, and therefore the new peak (M) is

surely owing to martensite structure. These peaks indicate that
quite a few unit cell has that strain. It is guessed that the jump
behavior in strain is also observed in each unit lattices. Utilizing
the criterion e33

cr , the martensite ratio r can be defined as

r ¼ the number of atoms with e33
i P e33

cr

total number of atoms in the specimen
: ð18Þ

A middle criterion is intentionally set at e33
cr ¼ 0:05 (called cate-

gory-1, here) in case that intermediate peak appears. The final cri-
terion is set at e33

cr ¼ 0:10 (called category-2, here). Fig. 12 shows
the time transition of r for 1D and 3D periodic models.

The results show the transition of r from 0% to 100%. In the fig-
ure, ratio of category-1 (0:05 6 e33

i < 0:10) appears first at ‘‘FS1”,
but it is short-lived and vanishes at the end of the loading. On
the other hand, the ratio of category-2 (e33

i P 0:10) begins to in-
crease at point ‘‘FS2”, and finally goes to 100%. These category-2
atoms steadily propagate during the plateau region in the S–S
curve (Fig. 9). Therefore, it is judged that the martensite begins
to form at ‘‘FS2”. The method for detecting MT by using the ASM
component works successfully with a criterion e33

cr ¼ 0:10.
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3.3. Observation of martensite phase nucleation: Dependence on
periodical condition

In the specimen surrounded by free surfaces (1D periodic mod-
el), nucleation of MT occurs at edges of the rectangular specimen.
Fig. 13 shows an example of the atomic configuration viewed from
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or in stress–strain (rz � ez) curve.
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the edge of the specimen. Atoms with ASMs larger than the mar-
tensite criterion (e33

cr ¼ 0:10) are rendered with relatively larger
spheres. They are found around the edges. On the other hand, in
the case without any surface region (3D periodic case), nucleation
of MT can be observed wherever strain is likely to be localized as
seen in Fig. 13c. As shown in Fig. 13b most intuitively, the case
with periodic boundary condition only in one direction (2D peri-
odic case) shows importance of the free surface for MT nucleation.
Nucleation sites are observed only on the free surfaces. This picture
also shows that many embryos occur almost at the same time.
Thus, it is understood that MT nucleation is dominated by the
strength of constraint which corresponds to the periodicity of
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Fig. 13. Nucleation of martensite phase near surface of edges; atoms are depicted by
Nucleation sites are emphasized by circles or pointed out by arrows. In the 1D periodic m
model they exist everywhere. The 2D model shows the importance of free surface most
models. In other words, there is strong surface effect on MT
nucleation.

The way to transform is as follows. At the corner, two Ni atoms
move apart first in the tensile direction, then the geometry of the
crystal unit turns into that of martensitic structure. Nucleated mar-
tensite triggers transformation inside the specimen. Subsequently,
planar interfaces between the austenite and martensite phases are
formed.

The difference due to periodicity of the computation model can
be found in the first yield stress and strain. Fig. 14 shows a variety
of the first yield points picked up from S–S curves. The first yield
behavior is assumed to be the beginning of MT. We do not mention
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spheres. Atoms detected as martensite are rendered with relatively larger sphere.
odel they are typically found at the corner edges of the specimen, whereas in the 3D
intuitively. All of the nucleation sites in 2D model are found on free surfaces.
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about other specimens which have larger or smaller size, but their
results are included for comparison. Generally speaking, the yield-
ing stress and strain are greater for higher periodicity
(1D < 2D < 3D). This indicates that nucleation is easy in the order:
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Fig. 15. Transition of phase front in the case of 1D periodic model, where A denotes a
thickness) which is cut out from the specimen in parallel to the tensile direction, while th
lines denote the obvious interfaces between austenite and martensite. The numbers in
(1) corner edge (1D), (2) flat surface (1D and 2D), and (3) bulk (1D,
2D and 3D).

3.4. Analysis of martensite phase propagation

Propagation of the martensite phase following the nucleation
phenomena also varies with periodicity of the model. The transi-
tion of atomic configurations, colored by ASM value, is shown in
Figs. 15 and 16. Austenite (indicated by A) and martensite (by M)
are distinguished by criterion e33

cr ¼ 0:10. Once M phase is some-
where nucleated by loading, the initial A phase steadily transforms
into M phase. Especially in the 1D periodic model, which is shown
in Fig. 15, clear phase fronts between M and A are observed. Curi-
ously, phase fronts found in this simulation are remarkably similar
to the experimental result of Ni–Ti material in uniaxial tension
[32,33], even though the specimen is quite larger than our compu-
tational model and the elements are different from our Ni–Al. On
the other hand, the 3D periodic model in Fig. 16 shows initially
chaotic occurrence of M phases. But after enough strain the distrib-
uted M phases coalesce each other and finally become one large M
phase.

It is found from these figures that the phase interface is inclined
to the tensile direction by 45—60�. The interface plane between the
initial phase (in body-centered) and product one (in face-centered)
have to match between f110gbc and f111gfc . These are known as
‘‘habit planes” usually discussed in MT studies. Fig. 17 explains
the crystallographic relation between two habit planes. Since the
ratio of lattice parameters c=a comes to around 1.32 in the unit
of M phase, the habit plane ð�111Þfc has a certain angle to ð001Þ
plane which is common to A and M phases. The angle, h, is esti-
mated as follows: h ¼ tan�1ðc=aÞ � tan�1ð1:32Þ ¼ 52:9�. On the
other hand, habit plane in austenite is ð101Þbc and the angle to
ð001Þ plane is 45�. The angle of phase boundary observed in MD
results comes to this range.
ustenite and M does martensite. The upper figures show only a thin slab (0.4 nm
e lower figures are front views of the specimen showing only martensite. The broken
the figure denote nominal strain in percentage (e.g. ‘‘30.0” denotes ez ¼ 0:30).



Fig. 16. Transition of phase front in the case of 3D periodic model, where ‘‘A” means austenite and ‘‘M” does martensite. The viewing method is the same as Fig. 15.
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The atomic strain measure (ASM) is used to look into local dis-
tortion of crystals in the course of MD simulation. Fig. 18 shows
plots of the most probable values of ASM components, e33

i , e11
i ,

and e22
i .

As previously mentioned, the ASM value does not show the ex-
act value of strain. Therefore, we map ASM components to e1 and
e2, which are already used as variables in the energy-deformation
map (Fig. 2) and in the stress-deformation map (Fig. 4). As shown
in Table 2, there are a certain relation between the ratio c=c0 ¼ e2

and the ASM component e33
i or between the ratio a=a0 ¼ e1 and

the ASM component e11
i .
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Fig. 17. Formation of interface between austenite and martensite.
What is found first is that plots are clearly discontinuous, which
means that there is jump behavior in strain during the transforma-
tion event. Plots are found along the energy-minimum curve,
where the stress component rz is not zero while both transverse
stress components, rx and ry, vanish. Basically the MD results
are predicted by the static energetic survey which has been done
in Section 2.2.

We conclude that, in dynamics simulation of uniaxial loading,
the EAM potential we use produces two distinct stable crystalline
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Fig. 18. Transition of atomic strain measure using peak value of 1D case. The
sparsely sampled peak values which is observed in Fig.11 are mapped on e1 � e2

graph (axes are same as Fig. 2 or Fig.4. The austenite phase is exactly at the origin.
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phases. It is not necessary to have two energy wells (minima) in
potential energy map to reproduce stress-induced MT transforma-
tion. We omit discussions regarding the thermal effects on free en-
ergy. This discussion, however, is worth while doing and should be
done in further study.

4. Conclusion

The basic atomistic mechanism of cubic-to-tetragonal martens-
itic transformation (MT) in Ni–Al alloys is studied. In order to
investigate the surface effect, the straining method with variety
of periodicity is added to the framework of molecular dynamics
(MD). A semi-empirical potential function based on EAM frame-
work (Finnis–Sinclair (FS) potential) which has single minimum
in energy map is applicable.

1. In uniaxial loading, the FS potential produces distinct phases
corresponding to austenite and martensite and shows complete
recovery of shape during the unloading process. The second
well in potential function is not required for obtaining martens-
ite phase. It is found that there is jump behavior between aus-
tenite and martensite phases. The jump occurs in a plateau
region which appears in stress–strain curve for the whole
specimen.

2. Uniaxial condition with a variety of periodicity works well for
MT simulation. The periodicity of the MD specimen raises stress
and strain required for making nucleation site. When using 3D
periodic cell, MT nuclei appear everywhere but they finally coa-
lesce into one martensite.

3. The atomic strain measure (ASM), formulated using atomic
coordinates, is successful in detecting the structural change of
a unit crystal undergoing MT.
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