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We present a new method for isothermal rigid body simulations using the quaternion representation
and Langevin dynamics. It can be combined with the traditional Langevin or gradient �Brownian�
dynamics for the translational degrees of freedom to correctly sample the canonical distribution in
a simulation of rigid molecules. We propose simple, quasisymplectic second-order numerical
integrators and test their performance on the TIP4P model of water. We also investigate the optimal
choice of thermostat parameters. © 2009 American Institute of Physics. �DOI: 10.1063/1.3149788�

I. INTRODUCTION

Classical molecular dynamics simulation of an isolated
system naturally samples states from a microcanonical
�NVE� ensemble, where the number of particles N, volume
V, and total energy of the system E are held constant. How-
ever, in many cases it is desirable to study the system in a
more experimentally relevant canonical �NVT� ensemble,
where the temperature T is specified instead of E. In order to
sample from the canonical ensemble, the molecular dynam-
ics equations of motion are modified by introducing the in-
teraction of the system with a “thermostat.” There exist a
large variety of approaches for introducing such a thermo-
stat, which can be roughly classified into two categories:
deterministic and stochastic, depending on whether the re-
sulting equations of motion contain a random component
�for a review, see, e.g., Ref. 1�.

Among various deterministic approaches, those based on
coupling the system to a few external degrees of freedom
�e.g., Nosé–Hoover thermostat� have become very popular.
Given ergodicity in the molecular system dynamics, such
thermostats are proven to generate correct canonical en-
semble sampling of the system phase space. However, since
the thermostat variables are coupled and control directly only
global system quantities �e.g., kinetic energy�, such thermo-
stats rely on the efficient energy transfer within the system to
achieve equipartition within the canonical distribution, such
that the average energy of each degree of freedom within the
system is equal to kBT. Therefore, in a system where the
energy transfer between its different parts is slow �e.g., sys-
tems combining fast and slow degrees of freedom�, the
simple Nosé–Hoover thermostat may have difficulty main-
taining the same temperature for the different parts of the
system. In this case more complicated thermostats are nec-
essary, for example, Nosé–Hoover chain thermostat, or sepa-
rate thermostats for different parts of the systems �see, e.g.,
Ref. 2�.

The stochastic approach exploits ergodic stochastic dif-
ferential equations �SDEs� with the Gibbsian �canonical en-
semble� invariant measure. For this purpose, Langevin-type
equations or gradient systems with noise can be used �see,

e.g., Refs. 3–7 and references therein�. Stochastic thermo-
stats, with their independent thermalization of each degree of
freedom, provide direct control of equipartition and thus do
not need to rely on the efficient energy transfer within the
system.

In order to achieve such a direct thermalization of the
system, one needs to be able to apply stochastic thermostats
to all types of degrees of freedom. The standard Langevin
equations for translational degrees of freedom are well
known, while Langevin thermostats for systems with con-
straints have been proposed quite recently.8,9 In this paper we
introduce Langevin equations for the rigid body dynamics in
the quaternion representation and propose effective second-
order quasisymplectic numerical integrators for their simula-
tion. These equations can be coupled either with Langevin or
Brownian dynamics for the translational degrees of freedom.

In Sec. II we recall the Hamiltonian system for rigid
body dynamics in the quaternion representation from Ref.
10, based on which we derive Langevin and gradient-
Langevin thermostats. Second-order �in the weak sense� nu-
merical methods for these stochastic systems are constructed
in Sec. III. We test the thermostats and the proposed numeri-
cal integrators on the TIP4P model of water.11 The results of
our numerical experiments are presented in Sec. IV. In par-
ticular, we investigate the optimal choice of thermostat pa-
rameters and the discretization error of the numerical meth-
ods. A summary of the obtained results is given in Sec. V.

II. EQUATIONS OF MOTION

We consider a system of n rigid three-dimensional mol-
ecules described by the center-of-mass coordinates r
= �r1T , . . . ,rnT�T�R3n, rj = �r1

j ,r2
j ,r3

j �T�R3, and the rota-
tional coordinates in the quaternion representation q
= �q1T , . . . ,qnT�T�R4n, qj = �q0

j ,q1
j ,q2

j ,q3
j �T�R4, such that

�qj�=1 �for further background on the quaternion representa-
tion of rigid body dynamics, see e.g., Refs. 12–14�. We use
standard matrix notations, and “T” denotes transpose. Fol-
lowing Ref. 10, we write the system Hamiltonian in the forma�Electronic mail: rld8@mcs.le.ac.uk.

THE JOURNAL OF CHEMICAL PHYSICS 130, 234101 �2009�

0021-9606/2009/130�23�/234101/14/$25.00 © 2009 American Institute of Physics130, 234101-1

Downloaded 12 Sep 2009 to 193.190.253.147. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3149788
http://dx.doi.org/10.1063/1.3149788


H�r,p,q,�� =
pTp

2m
+ �

j=1

n

�
l=1

3

Vl�qj,� j� + U�r,q� , �1�

where p= �p1T , . . . , pnT�T�R3n, pj = �p1
j , p2

j , p3
j �T�R3, are the

center-of-mass momenta conjugate to r, �= ��1T , . . . ,�nT�T

�R4n, � j = ��0
j ,�1

j ,�2
j ,�3

j �T�R4, are the angular momenta
conjugate to q, and U�r ,q� is the potential interaction en-
ergy. The second term represents the rotational kinetic en-
ergy of the system with

Vl�q,�� =
1

8Il
��TSlq�2, q,� � R4, l = 1,2,3, �2�

where the three constant four-by-four matrices Sl are such
that

S1q = �− q1,q0,q3,− q2�T, S2q = �− q2,− q3,q0,q1�T,

S3q = �− q3,q2,− q1,q0�T,

and Il are the principal moments of inertia of the rigid mol-
ecule. The Hamilton equations of motion are

dr

dt
=

p

m
,

dp

dt
= − �rU�r,q� ,

dqj

dt
= �

l=1

3

��jVl�qj,� j� ,

d� j

dt
= − �

l=1

3

�qjVl�qj,� j� − �qjU�r,q� ,

j = 1, . . . ,n . �3�

It is easy to check that if the initial conditions are chosen
such that �qj�0��=1, then the corresponding Hamilton equa-
tions of motion ensure that

�qj�t�� = 1, j = 1, . . . ,n for all t � 0. �4�

In the rest of this section we derive stochastic thermo-
stats for this molecular system, which preserve Eq. �4�. They
take the form of ergodic SDEs with the Gibbsian �canonical
ensemble� invariant measure possessing the density

��r,p,q,�� � exp�− �H�r,p,q,��� , �5�

where �=1 / �kBT��0 is an inverse temperature.

A. Langevin-type equations

Consider the Langevin-type equations �in the form of
Ito�,15

dRj =
Pj

m
dt, Rj�0� = rj ,

dPj = − �rjU�R,Q�dt − �g�Pj,Rj�dt

+ b�Rj�dwj�t�, Pj�0� = pj , �6�

dQj = �
l=1

3

��jVl�Qj,� j�dt, Qj�0� = qj, �qj� = 1,

d� j = − �
l=1

3

�qjVl�Qj,� j�dt − �qjU�R,Q�dt

− 	G�Qj,� j�dt + B�Qj,� j�dWj�t�, � j�0� = � j ,

j = 1, . . . ,n , �7�

where ��0 and 	�0 with �	�0 are the friction coeffi-
cients for the translational and rotational motions, respec-
tively, measured in units of inverse time, which control the
strength of coupling of the system to the “heat bath;” g is a
three-dimensional appropriately normalized vector; G is a
four-dimensional vector, which provides a balance in cou-
pling various rotational degrees of freedom with the heat
bath; b and B are three-by-three and four-by-four matrices,
respectively; and �wT ,WT�T= �w1T , . . . ,wnT ,W1T , . . . ,WnT�T

is a �3n+4n�-dimensional standard Wiener process with wj

= �w1
j ,w2

j ,w3
j �T and Wj = �W0

j ,W1
j ,W2

j ,W3
j �T.

For simplicity, we assumed here that g, G, b, and B are
the same for all n molecules, although one could choose
them depending on the molecule number j. The latter can be
especially useful for systems consisting of significantly dif-
ferent types of molecules. It is also natural to require that
each degree of freedom is thermalized by its own indepen-
dent noise, and in what follows we assume that the matrices
b and B are diagonal. Further, we suppose that the coeffi-
cients of system �6�-�7� are sufficiently smooth functions and
the process X�t�= �RT�t� ,PT�t� ,QT�t� ,�T�t��T is ergodic, i.e.,
there exists a unique invariant measure 
 of X and indepen-
dently of x�R14n there exists the limit

lim
t→�

E��X�t;x�� =� ��x�d
�x� ª �erg �8�

for any function ��x� with polynomial growth at infinity �see
Refs. 5, 6, 16, and 17 and references therein�. Here X�t ;x� is
the solution X�t� of system �6�-�7� with the initial condition
X�0�=X�0;x�=x.

It is not difficult to see that the solution of system �6�-�7�
preserves the property �4�, i.e.,

�Qj�t�� = 1, j = 1, . . . ,n for all t � 0. �9�

System �6�-�7� possesses the Gibbsian stationary mea-
sure with the density ��r ,p ,q ,�� from Eq. �5� when the
coefficients �, 	, g, G, b, and B are such that � is a solution
of the stationary Fokker–Planck equation corresponding to
system �6�-�7�. After some calculations, we get the required
relations between �, 	, g, G, b, and B �see Appendix A�.
Since numerical methods are usually simpler for systems
with additive noise, we limit computational consideration of
thermostats in this paper to the case of bii and Bii both being
constant. At the same time, we note that general thermostats
defined by Eqs. �6�-�7� may have some beneficial features for
certain systems but we leave this question for further study.
For constant bii and Bii, the relations between �, 	, g, G, b,
and B take the form
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�gi�pj,rj� =
�

m

bii
2

2
pi

j and 	Gi�qj,� j� = �
Bii

2

2

�H

��i
j . �10�

In the considered molecular model it is natural to have the
same value for all bii, i=1,2 ,3, and the same value for all
Bii, i=1, . . . ,4. Further, taking into account the form of
Hamiltonian �1�, we can write

G�q,�� = J�q�� and Bii
2 =

2M	

�

with

J�q� =
�l=1

3 1

Il
Slq�Slq�T

�l=1

3 1

Il

and M =
4

�l=1

3 1

Il

. �11�

Note that Tr J�q�= �q�2=1.
Thus, in this paper under Langevin thermostat we under-

stand the following stochastic system:

dRj =
Pj

m
dt, Rj�0� = rj ,

dPj = − �rjU�R,Q�dt − �Pjdt +�2m�

�
dwj�t�,

Pj�0� = pj , �12�

dQj = �
l=1

3

��jVl�Qj,� j�dt, Qj�0� = qj, �qj� = 1,

d� j = − �
l=1

3

�qjVl�Qj,� j�dt − �qjU�R,Q�dt

− 	J�Qj�� jdt +�2M	

�
dWj�t�, � j�0� = � j ,

j = 1, . . . ,n , �13�

where J�q� and M are from Eq. �11�, the rest of the notation
is as in Eqs. �6� and �7�. We recall that � and 	 are free
parameters having the physical meaning of the strength of
coupling to the heat bath.

In Appendix B we also derive the equations for the
body-fixed angular velocities 
x, 
y, and 
z corresponding
to the rotational Langevin subsystem �13�.

B. A mixture of gradient system and Langevin-type
equation

Another possibility of stochastic thermostating of Eq. �3�
rests on a mixture of a gradient system for the translational
dynamics and Langevin-type equation for the rotational dy-
namics. We note that according to the density of Gibbsian
measure �5� the center-of-mass momenta P are independent
Gaussian random variables and they are independent of the
other components of the system so we can avoid simulating
P via a differential equation.

Consider the gradient-Langevin thermostat,

dR = −
�

m
�rU�R,Q�dt +� 2�

m�
dw�t�, R�0� = r , �14�

dQj = ��j�
l=1

3

Vl�Qj,� j�dt, Qj�0� = qj, �qj� = 1,

d� j = − �qj�
l=1

3

Vl�Qj,� j�dt − �qjU�R,Q�dt

− 	J�Qj�� jdt +�2M	

�
dWj�t�, � j�0� = � j ,

j = 1, . . . ,n , �15�

where all the notation is as in Eqs. �12� and �13� and, in
particular, J�q� and M are from Eq. �11�. The invariant mea-
sure ��r ,q ,�� �see Eq. �16� below� of system �14�-�15� is
Eq. �5� integrated over p. Property �9� is preserved. The
gradient-Langevin thermostat has two free parameters, �
�0 and 	�0. The latter is the same as in Eq. �13�, while the
former, measured in units of time, controls the speed of evo-
lution of the gradient subsystem �14�.

It is important to note that the gradient system does not
have a natural dynamical time evolution similar to Hamil-
tonian or Langevin dynamics. This is because changing pa-
rameter � simply leads to a time renormalization of the gra-
dient subsystem �14�. However, when linked with the
Langevin dynamics for rotational degrees of freedom, as in
Eqs. �14� and �15�, parameter � controls the “speed” of evo-
lution of the gradient subsystem relative to the speed of the
rotational dynamics.

To check that

��r,q,�� � exp	− �
�
j=1

n

�
l=1

3

Vl�qj,� j� + U�r,q��� �16�

is the density of the invariant measure for system �14�-�15�,
one needs to consider the corresponding stationary Fokker–
Planck equation analogously to how it is done in Appendix A
for the Langevin-type equations. Let us remark18 that the
gradient subsystem �14� can be viewed as an overdamped
limit of the Langevin translational subsystem �12� for a
fixed Q.

III. NUMERICAL INTEGRATORS

In this section we consider effective second-order nu-
merical methods for Langevin thermostat �12�-�13� and
gradient-Langevin thermostat �14�-�15�. We first recall the
idea of quasisymplectic integrators for Langevin-type equa-
tions introduced in Ref. 19 �see also Refs. 7 and 20� and also
some basic facts from stochastic numerics.20

Consider the Langevin Eqs. �12� and �13�. Let D0�Rd,
d=14n be a domain with finite volume. The transformation
x= �rT ,pT ,qT ,�T�T�X�t�=X�t ;x�
= �RT�t ;x� ,PT�t ;x� ,QT�t ;x� ,�T�t ;x��T maps D0 into the do-
main Dt. The volume Vt of the domain Dt is equal to

234101-3 Langevin thermostat for rigid body dynamics J. Chem. Phys. 130, 234101 �2009�

Downloaded 12 Sep 2009 to 193.190.253.147. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Vt = �
Dt

dX1, . . . ,dXd

= �
D0


D�X1, . . . ,Xd�
D�x1, . . . ,xd�


dx1, . . . ,dxd. �17�

The Jacobian determinant J is equal to �see, e.g., Ref. 21�,

J =
D�X1, . . . ,Xd�
D�x1, . . . ,xd�

= exp�− n�3� + 	�t� . �18�

System �12�-�13� preserves phase volume when �=0 and 	
=0. If ��0 and 	�0 with �	�0 then phase-volume con-
tractivity takes place.

If we omit the damping terms, −�Pj and −	J� j, in Eqs.
�12� and �13� then the system becomes a Hamiltonian system
with additive noise,20,21 i.e., its phase flow preserves sym-
plectic structure. When �=0 and 	=0, Eqs. �12� and �13�
take the form of the deterministic Hamiltonian system �3�.

We say that the method based on a one-step approxima-

tion X̄= X̄�t+h ; t ,x�, h�0, is symplectic if X̄ preserves sym-
plectic structure.20,21 It is natural to expect that making use of
numerical methods, which are close, in a sense, to symplec-
tic ones, has advantages when applying to stochastic systems
close to Hamiltonian ones. In Ref. 19 �see also Ref. 20�
numerical methods �they are called quasisymplectic� for
Langevin equations were proposed, which satisfy the two
structural conditions:

RL1. The method applied to Langevin equations de-
generates to a symplectic method when the Langevin
system degenerates to a Hamiltonian one.

RL2. The Jacobian determinant J=DX̄ /Dx does not
depend on x.

The requirement RL1 ensures closeness of quasisym-
plectic integrators to the symplectic ones. As it is always
assumed, a method is convergent and, consequently, J is
close to J at any rate. The requirement RL2 is natural since
the Jacobian J of original system �12�-�13� does not depend
on x. RL2 reflects the structural properties of the system
which are connected with the law of phase-volume contrac-
tivity. It is often possible to reach a stronger property con-
sisting in the equality J=J.

We usually consider two types of numerical methods for
SDEs: mean-square and weak.20 Mean-square methods are
useful for direct simulation of stochastic trajectories while
weak methods are sufficient for evaluation of averages and
are simpler than mean-square ones. Therefore, weak methods
are most suitable for the purposes of this paper. Let us

recall20 that a method X̄ is weakly convergent with order
p�0 if

�E��X̄�T�� − E��X�T��� � Chp, �19�

where h�0 is a time discretization step and � is a suffi-
ciently smooth function with growth at infinity not faster
than polynomial. The constant C does not depend on h, it
depends on the coefficients of a simulated stochastic system,
on �, and T.

A. Numerical schemes for the Langevin thermostat

We assume that system �12�-�13� have to be solved on a
time interval �0,T� and for simplicity we use a uniform time
discretization with the step h=T /N. Using standard ideas of
stochastic numerics19,20 including splitting techniques and
the numerical method from Ref. 10 for the deterministic
Hamiltonian system �3�, we derive two quasisymplectic in-
tegrators for Langevin system �12�-�13�.

The first integrator �Langevin A� is based on splitting
Langevin system �12�-�13� into the Hamiltonian system with
additive noise �i.e., Eqs. �12� and �13� without the damping
terms� and the deterministic system of linear differential
equations of the form

ṗ = − �p ,

�20�
�̇ j = − 	J�qj�� j, j = 1, . . . ,n .

We construct a second-order weak quasisymplectic integrator
for the stochastic Hamiltonian system20,21 and appropriately
concatenate19,20 it with the exact solution of Eq. �20�. The
resulting numerical method is given below.

Introduce the mapping �l�t ;q ,��: �q ,��� �Q ,�� de-
fined by

Q = cos��lt�q + sin��lt�Slq ,

� = cos��lt�� + sin��lt�Sl� , �21�

where

�l =
1

4Il
�TSlq .

The first quasisymplectic scheme for system �12�-�13�
can be written in the following form.

Langevin A

P0 = p, R0 = r, Q0 = q, �0 = � ,

P1,k = Pk exp�− �h/2� ,

�1,k
j = exp�− 	J�Qk

j�h/2��k
j , j = 1, . . . ,n ,

P2,k = P1,k −
h

2
�rU�Rk,Qk� +

�h

2
�2m�

�
�k,

�2,k
j = �1,k

j −
h

2
�qjU�Rk,Qk� +

�h

2
�2M	

�
�k

j

−
h2

4

	

�
Qk

j , j = 1, . . . ,n ,

Rk+1 = Rk +
h

m
P2,k,

�Q1,k
j ,�3,k

j � = �3�h/2;Qk
j ,�2,k

j � ,

�Q2,k
j ,�4,k

j � = �2�h/2;Q1,k
j ,�3,k

j � ,

�Q3,k
j ,�5,k

j � = �1�h;Q2,k
j ,�4,k

j � ,
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�Q4,k
j ,�6,k

j � = �2�h/2;Q3,k
j ,�5,k

j � ,

�Qk+1
j ,�7,k

j � = �3�h/2;Q4,k
j ,�6,k

j �, j = 1, . . . ,n ,

�8,k
j = �7,k

j −
h

2
�qjU�Rk+1,Qk+1� +

�h

2
�2M	

�
�k

j

−
h2

4

	

�
Qk+1

j , j = 1, . . . ,n ,

P3,k = P2,k −
h

2
�rU�Rk+1,Qk+1� +

�h

2
�2m�

�
�k,

Pk+1 = P3,k exp�− �h/2� ,

�k+1
j = exp�− 	J�Qk+1

j �h/2��8,k
j , j = 1, . . . ,n ,

k = 0, . . . ,N − 1, �22�

where �k= ��1,k , . . . ,�3n,k�T and �k
j = ��1,k

j , . . . ,�4,k
j �T,

j=1, . . . ,n, with their components being i.i.d. �independent
and identically distributed� with the same law,

P�� = 0� = 2/3, P�� = � �3� = 1/6. �23�

It is easy to check19,20 that scheme �22� is quasisymplec-
tic. Moreover, the Jacobian J of the corresponding one-step
approximation is exactly equal to the Jacobian J of the origi-
nal system �12�-�13�.

To prove the second order of weak convergence of Eqs.
�22� and �23�, we compared the corresponding one-step ap-
proximation with the one-step approximation corresponding
to the standard second-order weak method for SDEs with
additive noise from Ref. 20 �p. 113�. The following proper-
ties are used in this proof:

2M�
i=0

3
�2

��i
2�

l=1

3

�qVl�q,�� = 4q ,

�2

��i � � j
��Vl�q,�� = 0,

and

�

��i
lVl�qj,� j� =

�

�qi
lVl�qj,� j� = 0 for j � l .

As it is usual in stochastic numerics,20 we prove convergence
of a numerical method under the global Lipschitz assumption
on the coefficients of the stochastic system, which can then
be relaxed using the concept of rejecting exploding
trajectories.7

Analogously to the deterministic case,10 one can verify
that scheme �22� preserves Eq. �9�, i.e., �Qk

j �=1, j=1, . . . ,n,
for all k. We summarize the properties of methods �22�-�23�
in the following statement:

Proposition 1. Numerical scheme �22�-�23� for Eqs. �12�
and �13� is quasisymplectic, it preserves structural property
�9�, and is of weak order two.

We note that one can choose �k= ��1,k , . . . ,�3n,k�T and
�k

j = ��1,k
j , . . . ,�4,k

j �T, j=1, . . . ,n, so that their components are
i.i.d. Gaussian random variables with zero mean and unit
variance. In this case the weak order of the scheme remains
second as when we use the simple discrete distribution �23�.
Since simulation of the discrete random variables is cheaper
than Gaussian ones, it is preferable to use Eq. �23� and it was
used in all our experiments in this paper. Let us remark in
passing that in the case of Gaussian random variables the
above scheme also converges in the mean-square sense20

with order one.
Note that exp�−	J�q�h /2� in Eq. �22� is the exponent of

a matrix. It can be computed using a standard linear algebra
package �such as LAPACK�. Since J�q� is a symmetric matrix,
LAPACK’s dsyev routine can be used to obtain the eigende-
composition

J�q� = T�q��J�q�TT�q� , �24�

where T�q� is a matrix whose columns are the eigenvectors
of J�q� and

�J�q� = diag��J,1, . . . ,�J,4�

is a diagonal matrix of the corresponding eigenvalues. Then

exp�− 	J�q�h/2� = T�q�exp�− 	�J�q�h/2�TT�q� ,

where

exp�− 	�J�q�h/2� = diag�e−	�J,1h/2, . . . ,e−	�J,4h/2� .

Alternatively, the matrix exponent exp�−	J�q�h /2� in Eq.
�22� can be approximated via the Taylor expansion. To en-
sure the second-order convergence, it is sufficient to approxi-
mate it with accuracy O�h3� at one step; the scheme will
remain quasisymplectic but the Jacobian J will no longer be
equal to J in Eq. �18�.

When the parameters � and 	 are large �the strong cou-
pling to the heat bath conditions�, we propose to use a nu-
merical integrator for Langevin system �12�-�13� based on
the following splitting:

dPI = − �PIdt +�2m�

�
dw�t� ,

d�I
j = − 	J�q��I

jdt +�2M	

�
dWj�t� , �25�

dRII =
PII

m
dt ,

dPII = − �rU�RII,QII�dt ,

dQII
j = ��j�

l=1

3

Vl�QII
j ,�II

j �dt ,

d�II
j = − �qjU�RII,QII�dt − �qj�

l=1

3

Vl�QII
j ,�II

j �dt ,

j = 1, . . . ,n . �26�
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SDEs �25� have the exact solution,

PI�t� = PI�0�e−�t +�2m�

�
�

0

t

e−��t−s�dw�s� ,

�I
j�t� = exp�− 	J�q�t��I

j�0�

+�2M	

�
�

0

t

exp�− 	J�q��t − s��dWj�s� . �27�

To construct a method based on splitting �25�-�26�, we take
half a step of Eq. �25� using Eq. �27�, one step of a symplec-
tic method for Eq. �26�, and again half a step of Eq. �25�.

The Ito integral in the expression for �I
j in Eq. �27� is a

four-dimensional Gaussian vector with zero mean and the
covariance matrix

C�t;q� =
2M	

�
�

0

t

exp�− 2	J�q��t − s��ds

=
M

�
T�q��C�t;q,	�TT�q� , �28�

where T�q� is as in Eq. �24� and

�C�t;q,	� = diag��C,1, . . . ,�C,4�

with

�C,i�t;q,	� = � 2	t if �J,i = 0,

1 − exp�− 2	�J,i�q�t�
�J,i�q�

otherwise. �
i = 1, . . . ,4. �29�

We note that at least one eigenvalue of J�q� equals zero by
definition.

Finally, introduce a 4�4-dimensional matrix ��t ,q�
such that

��t;q��T�t;q� = C�t;q� . �30�

Since C�t ;q� is a symmetric matrix, ��t ;q� can be deter-
mined as a lower triangular matrix in the Cholesky decom-
position of C�t ;q�. LAPACK’s dpotrf can be used for this pur-
pose.

With the above definitions, we obtain the following qua-
sisymplectic scheme for system �12�-�13�.

Langevin B

P0 = p, R0 = r, Q0 = q, �0 = � ,

P1,k = Pke
−�h/2 +�m

�
�1 − e−�h��k,

�1,k
j = exp�− 	J�Qk

j�h/2��k
j + ��h/2;Qk

j��k
j ,

j = 1, . . . ,n ,

P2,k = P1,k −
h

2
�rU�Rk,Qk� ,

�2,k
j = �1,k

j −
h

2
�qjU�Rk,Qk�, j = 1, . . . ,n ,

Rk+1 = Rk +
h

m
P2,k,

�Q1,k
j ,�3,k

j � = �3�h/2;Qk
j ,�2,k

j � ,

�Q2,k
j ,�4,k

j � = �2�h/2;Q1,k
j ,�3,k

j � ,

�Q3,k
j ,�5,k

j � = �1�h;Q2,k
j ,�4,k

j � ,

�Q4,k
j ,�6,k

j � = �2�h/2;Q3,k
j ,�5,k

j � ,

�Qk+1
j ,�7,k

j � = �3�h/2;Q4,k
j ,�6,k

j �, j = 1, . . . ,n ,

�8,k
j = �7,k

j −
h

2
�qjU�Rk+1,Qk+1�, j = 1, . . . ,n ,

P3,k = P2,k −
h

2
�rU�Rk+1,Qk+1� ,

Pk+1 = P3,ke
−�h/2 +�m

�
�1 − e−�h��k,

�k+1
j = exp�− 	J�Qk+1

j �h/2��8,k
j + ��h/2;Qk+1

j ��k
j ,

j = 1, . . . ,n ,

k = 0, . . . ,N − 1, �31�

where �k= ��1,k , . . . ,�3n,k�T, �k= ��1,k , . . . ,�3n,k�T, and
�k

j = ��1,k
j , . . . ,�4,k

j �T, �k
j = ��1,k

j , . . . ,�4,k
j �T, j=1, . . . ,n, with

their components being i.i.d. with the same law �23�.
As in the case of scheme �22�-�23�, the Jacobian J of the

one-step approximation corresponding to integrator �31�-�23�
is exactly equal to the Jacobian J of the original system
�12�-�13�. The following proposition can be proved.

Proposition 2. The numerical scheme �31�-�23� for sys-
tem �12�-�13� is quasisymplectic, it preserves the structural
property �9�, and is of weak order two.

We note that if we omit the rotational component in
system �12�-�13�, scheme �22�-�23� coincides with a second-
order weak quasisymplectic method from Ref. 19 �see also
Refs. 7 and 20� and scheme �31�-�23� is close to the one from
Ref. 3 �see also Refs. 4, 19, 20, and 22�. Both stochastic
integrators �22�-�23� and �31�-�23� degenerate to the deter-
ministic scheme from Ref. 10 when �=0 and 	=0. Scheme
�31�-�23� is usually preferable when � and/or 	 are large �see
our experimental results in Sec. IV and a discussion in the
case of translational Langevin equations in Ref. 22�. It is
slightly more expensive than system �22�-�23� due to the
need of generating the additional 7n random variables �i,k

and �k
j per step and computing Cholesky factorization. How-

ever, for most molecular system of practical interest in com-
putational chemistry and physics, where majority of the com-
putational effort is spent on force calculations, the additional
cost is negligible.
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B. Numerical scheme for the gradient-Langevin
system

To construct the numerical scheme for the gradient-
Langevin system �14�-�15�, we exploit the Runge–Kutta
method of order two for equations with additive noise from
Ref. 20 �p. 113� to simulate the “gradient” part �14�, while
the “Langevin” rotational part �15� is approximated in the
same way as in Eq. �31�. The resulting second-order weak
scheme has the form.

Gradient-Langevin

R0 = r, Q0 = q, �0 = � ,

�1,k
j = exp�− 	J�Qk

j�h/2��k
j + ��h/2;Qk

j��k
j ,

j = 1, . . . ,n ,

�Rk = −
h

2

�

m
�rU�Rk,Qk� +

�h

2
� 2�

m�
�k,

Rk = Rk + 2 � �Rk,

�2,k
j = �1,k

j −
h

2
�qjU�Rk,Qk�, j = 1, . . . ,n ,

�Q1,k
j ,�3,k

j � = �3�h/2;Qk
j ,�2,k

j � ,

�Q2,k
j ,�4,k

j � = �2�h/2;Q1,k
j ,�3,k

j � ,

�Q3,k
j ,�5,k

j � = �1�h;Q2,k
j ,�4,k

j � ,

�Q4,k
j ,�6,k

j � = �2�h/2;Q3,k
j ,�5,k

j � ,

�Qk+1
j ,�7,k

j � = �3�h/2;Q4,k
j ,�6,k

j �, j = 1, . . . ,n ,

Rk+1 = Rk − �Rk +
�h

2
� 2�

m�
�k −

h

2

�

m
�rU�Rk,Qk+1� ,

�8,k
j = �7,k

j −
h

2
�qjU�Rk+1,Qk+1� ,

�k+1
j = exp�− 	J�Qk+1

j �h/2��8,k
j + ��h/2;Qk+1

j ��k
j ,

j = 1, . . . ,n; k = 0, . . . ,N − 1, �32�

where �k= ��1,k , . . . ,�3n,k�T and �k
j = ��1,k

j , . . . ,�4,k
j �T, �k

j

= ��1,k
j , . . . ,�4,k

j �T, j=1, . . . ,n, with their components being
i.i.d. with the same law �23�. The following proposition can
be proved.

Proposition 3. Numerical scheme �32�-�23� for Eqs. �14�
and �15� preserves the structural property �9� and is of weak
order two.

We draw attention to the fact that the above gradient-
Langevin scheme requires two force calculations per step
and thus is approximately twice as expensive as the Lange-
vin schemes presented in Sec. III A.

C. Computational errors

Let us recall that the objective is to compute highly mul-
tidimensional integrals with respect to the Gibbsian measure

�x� with density �5�. The considered stochastic systems
�12�-�13� and �14�-�15� are assumed to be ergodic with the
Gibbsian invariant measure and we can represent the inte-
grals of interest as �cf. Eq. �8��,

�erg =� ��x�d
�x� = lim
t→�

E��X�t;x�� . �33�

We are interested here in systems solutions of which satisfy a
stronger condition, namely they are exponentially ergodic,
i.e., for any x�R14n and any function � with a polynomial
growth,

�E��X�t;x�� − �erg� � Ce−�t, t � 0, �34�

where C�0 and ��0 are some constants. In Refs. 5, 6, and
17 �see also references therein�, one can find conditions un-
der which Langevin equations are exponentially ergodic.

It follows from Eq. �34� �and Eq. �33�� that for any �
�0 there exists T0�0 such that for all T�T0,

�E��X�T;x�� − �erg� � � . �35�

Then we can use the following estimate for the ergodic limit
�erg,

�erg � E��X�T;x�� � E��X̄�T;x��

� �̂erg
ª

1

L
�
l=1

L

��X̄�l��T;x�� , �36�

where T is a sufficiently large time, X̄ is an approximation of
X, and L is the number of independent approximate realiza-
tions. The total error

R�̂erg ª �̂erg − �erg �37�

consists of three parts: the error � of the approximation �erg

by E��X�T ;x��, the error of numerical integration Chp �see
Eq. �19��, and the Monte Carlo error; i.e.,

R�̂erg � Chp + � + O	 1
�L

� ,

or more specifically

bias��̂erg� = �E�̂erg − �erg� � Chp + � ,

var��̂erg� = O�1/L� .

Each error is controlled by its own parameter: sufficiently
large T ensures smallness of the error ��erg−E��X�T ;x���;
time step h �as well as the choice of numerical method�
controls the numerical integration error; the statistical error
is regulated by choosing an appropriate number of indepen-
dent trajectories L.

The other, commonly used in molecular dynamics, nu-
merical approach to calculating ergodic limits is based on the
known equality
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lim
t→�

1

t
�

0

t

��X�s;x��ds = �erg a . s . , �38�

where the limit does not depend on x. Then by approximat-
ing a single trajectory, one gets the following estimator for
�erg,

�erg �
1

T̃
�

0

T̃
��X�s;x��ds � �̌erg

ª

1

L
�
l=1

L

��X̄�lh;x�� ,

�39�

where T̃ is sufficiently large and Lh= T̃. In Ref. 23 this ap-
proach was rigorously justified in the case of ergodic SDEs
with nondegenerate noise and globally Lipschitz coefficients.

Let us emphasize that T̃ in Eq. �39� is much larger than T in

Eqs. �35� and �36� because T̃ should be such that it not just
ensures the distribution of X�t� to be close to the invariant
distribution �like it is required from T� but it should also
guarantee smallness of variance of �̌erg. See further details
concerning computing ergodic limits in Ref. 7 and references
therein.

IV. NUMERICAL INVESTIGATION

In this section we present a numerical study of the
Langevin and gradient-Langevin thermostats derived in Sec.
II. The overall performance of a thermostat algorithm de-
pends both on the choice of the thermostat �i.e., of continu-
ous dynamics which produce the exact sample from the ca-
nonical distribution� and quality of a numerical scheme �i.e.,
approximate discrete dynamics� used. Accordingly, the in-
vestigation here is split into two parts: �i� analysis of the
proposed stochastic thermostats from Sec. II �continuous dy-
namics� and �ii� analysis of the proposed numerical integra-
tors from Sec. III for these thermostats. In particular, we
investigate the dependence of the thermostat properties on
the choice of parameters � and 	 for Langevin system �12�-
�13� and � and 	 for the gradient-Langevin system �14�-�15�,
as well as the dependence of the numerical discretization
errors of the numerical schemes Langevin A, Langevin B,
and gradient-Langevin on the integration step size h. Our
practical recommendations on which algorithm is preferable
are based on the combined outcomes from these two parts of
our numerical study.

As a model system, we use the popular TIP4P rigid
model of water.11 In order to speed up the simulations, both
Lennard-Jones and electrostatic interactions are smoothly
turned off between 9.5 and 10 Å. This truncation has mini-
mal effect on the structure of liquid water, but leads to a
lower estimated melting temperature24 of 219 K.

The two key requirements of a thermostat are as follows:
�i� correct sampling of phase space points distributed accord-
ing to the Gibbs distribution at a desired thermostat tempera-
ture T, and �ii� rapid relaxation of the system to the desired
equilibrium state. The numerical accuracy of the sampling
can be estimated by comparing the values of various system
properties �e.g., kinetic and potential energies, pressure� av-
eraged over long simulation runs to those obtained with a
much smaller step size h.

To estimate how quickly the system relaxes to the de-
sired equilibrium state we use the following simple experi-
ment. A system of 2000 TIP4P water molecules is equili-
brated at T0=220 K. Then the temperature of the thermostat
is increased �instantaneously� to T1=270 K, and the run is
continued until the system is equilibrated at the new tem-
perature. We deliberately choose to simulate the system at
lower temperatures �close to the melting temperature for this
model of water�, where the relaxation of the system is ex-
pected to be slower.

Assuming that the system is exponentially ergodic �see
Eq. �34��, we can expect that any measured quantity A will
relax from its equilibrium value A0 at T0 to the equilibrium
value A1 at T1 according to the approximate formula

EA�t� � �A�t�� � A1 + �A0 − A1�exp�− t/�A� , �40�

where �A is the characteristic relaxation time of the quantity
A. The temperature switch occurs at t=0 and the angle brack-
ets denote average over an ensemble of independent simula-
tion runs. The subscript on �A indicates that different quan-
tities may relax with different rates. The rate of system
equilibration should be estimated from the maximum value
of �A among the quantities of interest.

The quantities we measure include the translational ki-
netic temperature

Ttr =
pTp

3nkBm
, �41�

rotational kinetic temperature

Trot =
2

3nkB
�
j=1

n

�
l=1

3

Vl�qj,� j� , �42�

and potential energy per molecule

U =
1

n
U�r,q� . �43�

To illustrate the response of the system to the instanta-
neous temperature change, we show in Fig. 1 the result of
applying the Langevin thermostat only to the translational
degrees of freedom, i.e., 	=0 in Eq. �13�. As expected, the
translational kinetic temperature quickly relaxes to the new
temperature, while the rotational kinetic temperature and po-
tential energy lag behind. To estimate the relaxation rates of
the measured quantities, we use the least-squares fit of the
exponential function �40� to the average measured quantity
�A�t��.

In all the simulations we performed, the potential energy
relaxation time is larger than that for either of the kinetic
temperatures. Therefore, we determine the relaxation time of
the system to the new equilibrium state based on the value
of �U.

Varying the value of the translational Langevin param-
eter �, we observe that relaxation is slower for both small
and large values of �, with the fastest relaxation around �
=4.0 ps−1. The existence of an optimal value for the choice
of the thermostat parameter is consistent with observations in
Ref. 22 and can be understood in terms of the interaction of
the system with the thermostat. For small values of �, the
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relaxation of the system is slow due to the limited heat flux
between the system and the thermostat. For large �, even
though the kinetic temperature relaxes very quickly, the re-
laxation of the configurational state of the system is appar-
ently hindered by the disruptive influence of the random
force on the Hamiltonian dynamics which is driving the sys-
tem to the new equilibrium.

A. Langevin thermostats

Next, we investigate the dependence of the system relax-
ation time �A on both � and 	 in Eqs. �12� and �13�. In order
to minimize the influence of the numerical discretization er-
ror, we use a relatively small time step of 0.2 fs. With such a
small time step, the difference between Langevin A and
Langevin B is negligible compared to the sampling error. To
produce the results reported below, we use Langevin A. We
evaluate �U on a logarithmic grid of � �ranging from 0.2 to
300 ps−1� and 	 �ranging from 0.8 to 3000 ps−1� values us-
ing five independent runs at each point. The results are
shown in Figs. 2–4. As expected, the relaxation speed of
translational and rotational temperatures uniformly increases
with increasing values of � and 	, respectively. At the same
time, the relaxation speed of the potential energy exhibits
nonuniform dependence on the thermostat parameters. As
can be seen in Fig. 4, the fastest relaxation of the system is
achieved when the Langevin thermostat is applied to both
translational and rotational degrees of freedom, with �
=2–8 ps−1 and 	=3–40 ps−1. The relaxation dynamics of
the system with the “optimal” choice of Langevin thermostat
parameters is demonstrated in Fig. 5. In this case �Ttr
=0.28 ps, �Trot

=0.26 ps, and �U=2.0 ps, which show that
the system relaxation is almost twice as fast as when the
Langevin thermostat is applied only to translational degrees
of freedom. Note that the results shown in Fig. 4 for � larger

than about 100 ps−1 or 	 larger than about 1000 ps−1 are not
reliable due to excessive coupling of the system to the ther-
mostat, which disrupts the Hamiltonian flow of the system.
In this case, the relaxation dynamics is poorly represented by
the exponential function �40� and thus the fits produce mis-
leading values for the system relaxation time.

In order to further investigate the properties of the
Langevin thermostat, we have also computed the integrated
autocorrelation time for the measured quantities of the sys-
tem equilibrated at 270 K,

�̄A = �
0

�

RA�t�dt ,

where
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FIG. 1. �Color online� Relaxation dynamics with translational Langevin
thermostat: �=4.0 ps−1, 	=0. Thin lines show relaxation dynamics aver-
aged over ten independent runs, thick lines �solid and dashed for transla-
tional and rotational temperatures, respectively� show the least-squares fit to
formula �40�. The estimated values of the relaxation times are �Ttr

=0.2 ps,
�Trot

=1.9 ps, and �U=3.6 ps.
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FIG. 2. �Color online� Translational temperature relaxation time for the
Langevin thermostat �12�-�13� as a function of the thermostat parameters �
and 	.
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FIG. 3. �Color online� Rotational temperature relaxation time for the Lange-
vin thermostat �12�-�13� as a function of the thermostat parameters � and 	.
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RA�t� = E��A�t�� − 
A��A�t� + t� − 
A��/�A
2

is the time autocorrelation function for the quantity A with

A and �A

2 being the estimated mean and variance of A,
respectively. In order to obtain sufficiently accurate results
for the integrated autocorrelation time, especially for �̄U, we
used 500 ps runs, which were much longer than the 20 ps
runs used to estimate the relaxation times �A. Therefore, we
computed �̄A at a few values of parameters � and 	. The
results, presented in Table I, illustrate that the dependence of
�̄A on the thermostat parameters is similar to that of the re-
laxation time �A: while �̄Ttr

and �̄Trot
decrease with increasing

� and 	, �̄U reaches a minimum at approximately the same
values of � and 	 as the relaxation time �U.

Now we look at the performance of the numerical inte-
grators proposed in Sec. III A for Langevin thermostat �12�-
�13�. Since both Langevin A and B are second-order meth-
ods, the calculated average quantities for simulations with
step size h should have the form20,25

�A�h = �A�0 + CAh2 + O�h3� , �44�

where �A�h denotes the average value of dynamical quantity
A�t� calculated over a numerical trajectory with time step h.
The dependence of �Ttr�h, �Trot�h, and �U�h on h for both
Langevin A and B is illustrated in Fig. 6. It appears that
Langevin A has larger discretization error for the rotational
temperature and smaller error for the potential energy than
Langevin B, which makes Langevin A better for evaluating
potential energy for this system. The linear dependence of
the measured quantities on h2 is maintained up to a relatively
large time step of about h=7 fs. The values of the slopes CA

are listed in Table II. Both methods become unstable at about
h=10 fs.
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FIG. 4. �Color online� Potential energy relaxation time for the Langevin
thermostat �12�-�13� as a function of the thermostat parameters � and 	.
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FIG. 5. �Color online� Relaxation dynamics with optimal choice of Lange-
vin thermostat parameters: �=4.0 ps−1, 	=10.0 ps−1. Thin lines show re-
laxation dynamics averaged over ten independent runs, thick lines �solid and
dashed for translational and rotational temperatures, respectively� show the
least-squares fit to formula �40�. The estimated values of the relaxation times
are �Ttr

=0.28 ps, �Trot
=0.26 ps, and �U=2.0 ps.

TABLE I. Integrated autocorrelation times for translational and rotational
kinetic temperatures and potential energy of the system with Langevin ther-
mostat equilibrated at 270 K.

�
�ps−1�

	

�ps−1�
�̄Ttr
�ps�

�̄Trot
�ps�

�̄U
�ps�

0.211 0.731 1.037 1.019 6.08
0.573 1.987 0.461 0.481 3.00
1.558 5.400 0.169 0.201 1.48
4.234 14.68 0.092 0.086 1.78

11.51 39.90 0.048 0.039 1.99
31.29 108.5 0.014 0.017 3.15

200

220

240

260

280

〈T
〉 h

,K

−10.6

−10.4

−10.2

−10

−9.8

1 22 32 42 52 62 72 82 92

〈U
〉 h

,k
ca

l/
m

ol

h2, fs2

FIG. 6. Dependence of the approximated average properties of a system of
2000 TIP4P water molecules on the integration time step h for Langevin A
and B. The system is equilibrated with the thermostat parameters �
=4.0 ps−1, 	=10.0 ps−1, and T=270 K. The quantities �Ttr�h, �Trot�h, and
�U�h are denoted by circles, triangles, and squares, respectively. Solid and
open symbols refer to Langevin A and B, respectively.
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We have investigated the dependence of �A�0 and CA on
the thermostat parameters � and 	, by running simulations
with time steps h=2 and 3 fs and estimating these quantities
from the straight line fit with respect to h2. We consider the
fit to be justified if the higher order terms in Eq. �44� are
small, i.e., when the quantities �Ttr�0 and �Trot�0 determined
from Eq. �44� are equal to the thermostat temperature param-
eter T=270 K. In Fig. 7 we show results for the translational
temperature measurements in simulations with Langevin A
and B. As expected, �Ttr�0 converges to 270 K. We note in
passing that smaller statistical errors are observed at larger
values of �. The behavior of CTtr

for Langevin A exhibits a
plateau for small and moderate values of � and 	 and then
changes rapidly at values that are “too large” for this system.
By contrast, the translational temperature discretization error
of Langevin B thermostat exhibits consistent behavior for all
values of � and 	. Similar differences between Langevin A
and B can be seen in the measurements of rotational tem-
perature and potential energy shown in Figs. 8 and 9, respec-
tively. As can be seen from the plot of �Trot�0 in Fig. 8,
the straight line fit also breaks down at large 	 values in
Langevin A.

B. Gradient-Langevin thermostat

Here we describe numerical experiments with the
gradient-Langevin thermostat �14�-�15� introduced in Sec.
II B. Since the gradient system for the translational motion
does not include linear momenta P, the translational kinetic

temperature Ttr is not available for measurement in this case.
Therefore, in our numerical experiments we measure the ro-
tational temperature Trot and potential energy per particle U
as defined by Eqs. �42� and �43�, respectively.

For the particular system studied here, the gradient-
Langevin numerical scheme �32�-�23� from Sec. III B be-
comes unstable when the product h� is larger than about
200 fs2. Therefore, with the step size of h=0.2 fs used in
our simulations, we can study the properties of the gradient-
Langevin scheme with � up to about 1000 fs.

We conducted the relaxation experiment, where we
monitored �Trot�t�� and �U�t�� while the thermostat tempera-
ture parameter was switched from 220 to 270 K. The relax-
ation times �Trot

and �U for these quantities were calculated
for different values of � and 	. The results are shown in Figs.
10 and 11. As expected, the relaxation time for rotational
temperature decreases with increasing value of 	. The some-

TABLE II. Values of the coefficients CA in the discretization errors �44� for
the measured quantities with Langevin A and B. The system parameters are
as in Fig. 6.

Langevin A Langevin B

CTtr
,K / fs2 �0.13 0.06

CTrot
,K / fs2 �0.85 �0.14

CU ,kcal /mol fs2 �0.0007 0.0056
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what surprising finding of this experiment is that even for
small values of 	 the relaxation time is much smaller here
than in the case of Langevin thermostat �see Fig. 3�. As an
illustration, we show the relaxation experiment for �
=100 fs and 	=0 in Fig. 12. The estimated relaxation time
for rotational temperature, �Trot

=0.14 ps, is much smaller
than the corresponding quantity for the Langevin thermostat,
even though the relaxation time for the potential energy, �U
=2.7 ps, is similar. This indicates a very efficient heat trans-
fer between the gradient dynamics of the translational mo-
tion and the rotational motion.

The dependence of �U on the thermostat parameters for
the gradient-Langevin system shown in Fig. 11 is markedly
different than for the Langevin system. In particular, the re-
laxation time decreases with increasing � without reaching a

minimum value within the range of � values explored. At the
same time, there is little dependence on 	, except for very
large 	 where, similar to the Langevin system, the measure-
ments of the relaxation time are not reliable. Also, note that
the relaxation times are much smaller, reaching as low as 0.7
ps for �=1000 fs, compared to the minimum value of about
2.0 ps for the Langevin system.

Of course, the direct comparison between the relaxation
speeds of gradient-Langevin and Langevin dynamics has to
be taken with caution, since, as we mentioned in Sec. II B,
the gradient dynamics does not have a natural evolution
time. In particular, the mass of the molecule m does not have
a specific meaning in the gradient system since it can be
rescaled to any value together with h and � �see Eq. �14��.
Computationally, the relaxation speed depends on the time
step h and, while with �=1000 fs the gradient-Langevin
scheme becomes unstable for h larger than 0.2 fs, the Lange-
vin scheme remains stable up to about h=10 fs for the op-
timal values of �=4.0 ps−1 and 	=10 ps−1.

The dependence of discretization error in measured
quantities on h for the gradient-Langevin scheme is shown in
Fig. 13. As in the case of Langevin A and B, we clearly see
the linear dependence of �Trot�h, and �U�h on h2. The esti-
mated slopes in Eq. �44� are CTrot

=−0.38 K / fs2 and CU=
−0.029 kcal /mol fs2. Unfortunately, for this value of � the
gradient-Langevin numerical integrator becomes unstable for
time steps h exceeding 1 fs, which is rather small, given that
Langevin A and B integrator are stable for h up to about 10
fs. Still, given the observed efficient heat transfer from the
gradient subsystem for translational dynamics to the rota-
tional dynamics �see Fig. 12 and related discussion�, it might
be of interest to construct numerical methods for the
gradient-Langevin system �14�-�15� with better stability
properties than those of system �32�-�23�; this has not been
considered in this paper.
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V. SUMMARY

The new stochastic thermostats presented in this paper
are appropriate for quaternion-based rigid body models.
They are written in the form of Langevin equations and
gradient-Langevin system �gradient subsystem for the trans-
lational degrees of freedom and Langevin subsystem for the
rotational degrees of freedom�. The obtained stochastic sys-
tems preserve the unit length of the rotational coordinates in
the quaternion representation of the rigid body dynamics.
The thermostats allow coupling both translational and rota-
tional degrees of freedom to the heat bath. As it is shown in
the numerical tests with the TIP4P rigid model of water, the
Langevin thermostat relaxes to an equilibrium faster when
not only translational degrees of freedom but also rotational
ones are thermostated. It turns out that there is an optimal
range of the strength of coupling to the heat bath. In contrast,
the gradient-Langevin thermostat has a monotone depen-
dence of relaxation time on the thermostat parameters. In the
case of the Langevin thermostat, two quasisymplectic
second-order �in the weak sense� integrators are constructed
and compared in the numerical tests. For the gradient-
Langevin thermostat, a Runge–Kutta second-order method is
proposed. All the methods preserve the unit length of the
rotational coordinates. The numerical experiments demon-
strate the efficiency of the proposed thermostating technique.

Relaxation times for the gradient-Langevin thermostat
are smaller than for the Langevin thermostat. However, the
numerical methods proposed for the Langevin system have
better stability properties than the scheme used for numerical
integration of the gradient-Langevin system. In our experi-
mental study, the use of the Langevin thermostat together
with the quasisymplectic integrators was computationally

significantly more efficient than thermostating via the
gradient-Langevin system and the numerical scheme for it.
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APPENDIX A: THE STATIONARY FOKKER-PLANCK
EQUATION FOR LANGEVIN-TYPE EQUATIONS

The stationary Fokker–Planck equation corresponding to
Eqs. �6� and �7� has the form �see, e.g., Refs. 5 and 16�

L�� = 0, �A1�

where

L�� ª �
j=1

n ��
i=1

3
bii

2�rj�
2

�2�

��pi
j�2 + �

i=1

4
1

2

�2

���i
j�2 �Bii

2�qj,� j���

+ �pj · ��g�pj,rj��� − �qj · 	��j�
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Vl�qj,� j���
+ ��j · 
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Vl�qj,� j� + �qjU�r,q�

+ 	G�qj,� j����� −
1

m
�r · �p��

+ �p · ��rU�r,q��� .

To find relations between �, 	, g, G, b, and B such that
system �6�-�7� possesses the Gibbsian stationary measure
with the density ��r ,p ,q ,�� from Eq. �5�, we substitute � in
Eq. �A1�. After some calculations, we get the required rela-
tions,
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For constant bii and Bii, relations �A2� and �A3� take the
simpler form �10�.
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FIG. 13. Dependence of the approximated average properties of a system of
2000 TIP4P water molecules on the integration time step h for the gradient-
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APPENDIX B: EQUATIONS FOR THE BODY-FIXED
ANGULAR VELOCITIES

Let us fix a molecule and write the equations for the
body-fixed angular velocities 
x, 
y, and 
z corresponding
to the rotational Langevin subsystem �13�. To this end, we
recall10 that


x = 2�S1Q�TQ̇, 
y = 2�S2Q�TQ̇, 
z = 2�S3Q�TQ̇ .

Then we obtain

d
x = 	 �1

I1
+

I2 − I3

I1

y
z�dt −

M	

4I1

xdt +

1

I1
�2M	

�
d 1,

d
y = 	 �2

I2
+

I3 − I1

I2

x
z�dt −

M	

4I2

ydt +

1

I2
�2M	

�
d 2,

d
z = 	 �3

I3
+

I1 − I2

I3

x
y�dt −

M	

4I3

zdt +

1

I3
�2M	

�
d 3,

�B1�

where �i are the torques, �i=− 1
2 �SiQ�T�qU, and d i

= 1
2� j=1

4 �SiQ� jdWj, which can be interpreted as random
torques. For 	=0, Eq. �B1� coincides with the equations for
the angular velocities in Ref. 10. We also note that due to the
form of Hamiltonian �1� the auxiliary velocity 
0 used in
Ref. 10 in the derivation of the Hamiltonian system for rigid
body dynamics is identically equal to zero.
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