
Computational Materials Science 47 (2009) 168–177
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Vibration analysis of multi-walled carbon nanotubes using a spring–mass
based finite element model

S.K. Georgantzinos, N.K. Anifantis *

Machine Design Laboratory, Mechanical and Aeronautics Engineering Department, University of Patras, GR 26500, Greece

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 April 2009
Received in revised form 30 June 2009
Accepted 8 July 2009
Available online 12 August 2009

Keywords:
Multi-walled carbon nanotubes
Vibration analysis
Nanosprings
Finite element analysis
0927-0256/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.commatsci.2009.07.006

* Corresponding author. Tel.: +30 2610 997 195; fa
E-mail address: nanif@mech.upatras.gr (N.K. Anifa
We report a study of the vibrational characteristics of multi-walled carbon nanotubes modeled exclu-
sively using springs and lumped masses. Based on the atomic microstructure of the nanotube, three-
dimensional nanoscale spring elements are utilized to simulate the dynamic behavior of each layer of
the multi-walled carbon nanotubes. Appropriate spring elements are also developed to model the inter-
layer interactions and describe the van der Waals potentials between carbon atoms on different layers.
Direct application of the physical variables of molecular mechanics theory to the springs is used to sim-
ulate the relative translations and rotations between atoms as well as the masses of the carbon atoms.
The stiffness and mass matrices of the problem are used to construct the dynamic equilibrium equation.
The natural modes of vibration and the corresponding natural frequencies are derived by solving the
eigenvalue problem for different support conditions. The present method suggests novel basic modes
of vibration, beyond those reported in the literature pertaining to multi-walled carbon nanotubes. The
effects on the basic modes and natural frequencies created by van der Waals interactions and geometric
parameters such as number of layers and aspect ratio are investigated in the context of elastic support
conditions. Comparisons with other theoretical studies reveal very good correlations in terms of funda-
mental modes and frequencies.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction CNTs and their composites, including both theoretical and experi-
Carbon nanotubes (CNTs) are molecular-scale tubes of graphite
carbon and are among the most promising nanoscale components
for nanostructures, nanodevices, nanocomposites, and various
applications due to their exceptional physical and mechanical
properties. This fact has attracted the interest of researchers in
the development of theoretical models and experimental measure-
ments used to predict the behavior of CNTs and to investigate their
potential for novel applications. CNTs are the stiffest and strongest
known fibers, with remarkable electronic properties and many
other unique characteristics. For more detail on theoretical predic-
tions and experimental measurements of both mechanical and
physical properties, see the comprehensive reviews in [1,2].

The combination of an extremely high stiffness and light weight
in CNTs results in vibration frequencies on the order of GHz and
THz. The vibrational behavior of CNTs is a fundamental character-
istic that should be fully studied because it is essential for applica-
tions such as electromechanical resonators, vibration sensors,
charge detectors, and field emission devices. An excellent review
article was recently published by Gibson et al. [3] that presents re-
lated scientific efforts in dealing with the vibrational behavior of
ll rights reserved.
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ntis).
mental studies. Comparisons between experimental and theoreti-
cal methods beyond the geometric characteristics of the CNTs
first require the complete definition of all parameters that influ-
ence the vibrational behavior, such as the slack phenomenon, the
nature of support conditions, environmental conditions, and other
factors. Garcia-Sanchez et al. [4] have recently presented a
mechanical method for detecting CNT resonator vibrations using
a novel scanning force microscopy method.

Because controlled experiments performed at nanoscale dimen-
sions remain both difficult and expensive, theoretical methods
such as molecular dynamics (MD) and molecular mechanics, as
well as elastic continuum mechanics, are considered efficient be-
cause they can accurately and cost-effectively produce results that
closely approximate the behavior of CNTs. Each of the previously
mentioned approaches offers different advantages, but also certain
drawbacks. MD is an accurate method capable of simulating the
full mechanical CNT performance. However, it carries a high com-
putational cost that may be prohibitive for large-scale problems,
especially in the context of vibration analysis. Molecular mechan-
ics-based techniques, such as those in [5–7], have been used for
vibration analysis of CNTs and have been shown to be accurate
and also more computationally cost-effective than MD. Neverthe-
less, under such approaches, the modeling of atomic interactions
requires special attention because the mechanical equivalent used
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to simulate the carbon–carbon bond deformations must be effi-
cient for the studied problem. An efficient mechanics-based
numerical model [8] for the vibrational analysis of single-walled
CNTs (SWCNTs) was recently published. The results of this study
showed new basic vibrational modes of CNTs that had not been re-
ported by other methods and also described the effects of defects
on the natural frequencies. Kwon et al. [9] estimated the natural
frequencies and mode shapes of various carbon nanotubes using
eigenvalue analysis of mass and stiffness matrices directly com-
puted from atomistic simulations. In contrast, elastic continuum
mechanics methods based on well-known beam theories have also
been successfully used to evaluate the vibration characteristics of
CNTs under typical boundary conditions [10–13]. Xu et al. [14]
studied the free vibration of double-walled CNTs modeled as two
individual beams interacting with each other taking van der Waals
forces into account and supported with different boundary condi-
tions between the inner and outer tubes. These methods have
the lowest computational cost; however, they can compute only
a subset (mainly the bending modes) of the vibrational modes
and natural frequencies.

In this paper, we study the vibrational characteristics of multi-
walled CNTs (MWCNTs). The method uses spring–mass elements
that simulate the interatomic interactions and the mass effects in
every layer of the MWCNTs. It uses a special technique for simulat-
ing the bending between adjacent bonds, distinguishing it from
other mechanics-based methods. This method utilizes the exact
microstructure of the CNTs while allowing the straightforward in-
put of the force constants that molecular theory provides. In addi-
tion, spring-like elements are formulated in order to simulate the
interlayer van der Waals interactions. These elements connect all
atoms between different layers at a distance smaller than the limit
below which the van der Waals potential becomes zero. The re-
lated stiffness is a function of this distance. We use modeling con-
siderations that are entirely compatible with molecular theory and
are not presented elsewhere for the vibrational analysis of
MWCNTs. The resulting dynamic equilibrium equations can be
used to generate new results. By applying different support condi-
tions, comparisons with fundamental frequencies as suggested by
other methods (where possible) demonstrate remarkable agree-
ment. To our knowledge, there has been no complete study of
vibrational characteristics of MWCNTs with respect to all relevant
geometric nanotube parameters. Here, we present a parametric
analysis and we report the natural frequencies as well as the mode
shapes of various MWCNTs for different aspect ratios and numbers
of layers. Moreover, we also investigate the effect of elastic support
conditions on the natural frequencies, another area that has not
been studied to date. Our method reveals new mode shapes that
in several cases are basic and have not yet been reported in the
literature.
2. MWCNT geometric specifications

Numerous articles report the main geometric characteristics of
nanotubes. A multi-walled carbon nanotube consists of multiple
layers of graphite rolled to form a tube. In other words, a MWCNT
consists of more than one coaxial SWCNT, where the interlayer dis-
tance is close to the distance between graphene layers in graphite,
i.e., approximately 0.34 nm. Further detail on geometries can be
found in [8,15].

The outer diameter Dout of a MWCNT can be calculated from the
diameter of the corresponding outer (n, m) SWCNT as given by the
following equation:

Dout ¼
ac—c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þ nmþm2Þ

p
p

; ð1Þ
where the integers ðn;mÞ express the number of steps along the zig-
zag carbon bonds [15] (and generally are used to name a nanotube)
and ac–c is the distance between two neighboring carbon atoms,
equal to 0.1421 nm.Given that the interlayer distance is 0.34 nm
(as observed in [16]), the difference between diameters of neighbor-
ing layers, where the diameter of every layer can be also calculated
using Eq. (1), is DD ¼ 0:68 nm. Knowing that this equation is a func-
tion only of the chirality indices of the two neighboring nanotubes
in a MWCNT, one can readily calculate the types of SWCNTs that are
a part of the MWCNT with a specified number of layers and outer
diameter. If ðn1;m1Þ and ðn2;m2Þ are the types of the inner and outer
neighboring layers, respectively, we note that for zigzag nanotubes,
the chirality indexes are n2 ¼ n1 þ 9 and m2 = m1 = 0. Correspond-
ingly, if the neighboring nanotubes exhibit armchair configurations,
then n2 ¼ m2 ¼ n1 þ 5 and m1 = n1. The type of MWCNT is declared
in terms of the type sequences of all the layers (nin, min) �. . .�
(nout, mout), starting from the type of the innermost tube and finish-
ing with the type of the outermost tube. Therefore, the zigzag
MWCNT that comprises ‘ layers can be specified as

ðnout � 9ð‘� 1Þ; 0Þ � ðnout � 9ð‘� 2Þ;0Þ � . . .� ðnout � 9;0Þ
� ðnout;0Þ; ð2Þ

where nout is the n chirality index of the outermost layer, and
the m chirality index for all the layers is equal to zero. The type
of an armchair multi-walled nanotube consisting of ‘ number of
layers is:

ðnout � 5ð‘� 1Þ; nout � 5ð‘� 1ÞÞ � ðnout � 5ð‘� 2Þ;
nout � 5ð‘� 2ÞÞ � . . .� ðnout; noutÞ; ð3Þ

and the n and m indices are equal to each other for every armchair
layer.

Knowing the type of every layer and the length of the tube, the
chiral vector and the translational vector that define the ideal rect-
angular cutting area of the graphene sheet are known [17]. Hence,
the original coordinate system of the graphene sheet ðx0; y0Þ is
transformed into a new system ðx; y; zÞ on the nanotube such that
the translational vector lies along the y’ -axis. Then, the graphene
atomic coordinates are converted to those of the corresponding
layer according to the equation (Kołoczek et al. [18])

ðx; y; zÞ ¼ R cos
x0

R

� �
; R sin

x0

R

� �
; y0

� �
; ð4Þ

where R is the nanotube-layer radius.
All of the geometric characteristics, such as chirality angles and

diameters, can be readily evaluated since they are dependent only
on chiral indices. The overall length of every layer is the same as
the length L of the MWCNT. A complete formula list for all param-
eters can been found in [17]. Consequently, the global design
parameters of MWCNTs are the number of layers, the chiral indices
of every layer, and the length of the tube.
3. Computational model

Our MWCNT modeling effort is based on linear nanosprings, as
referred to in [8], which simulate the interatomic behavior. The
hexagonal unit lattice of the CNT is simulated as a lattice of nano-
springs. In order to accurately model the mass of the tube, specific
masses are assumed to be concentrated at the nodes of particular
nanosprings such that a total mass equal to the mass of the carbon
nuclei is placed at each carbon position. Moreover, additional
nanosprings are incorporated to simulate the required interlayer
interactions.
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3.1. Interatomic behavior modeling

In this work, we use the potential energy to evaluate nanospring
stiffness. The total force on each atomic nuclei is the sum of the
force generated by the electrons and the electrostatic force be-
tween the positively charged nuclei themselves. The general for-
mula for the potential energy is

U ¼
X

Ur þ
X

Uh þ
X

U/ þ
X

Ux þ
X

Uvdw; ð5Þ

where Ur represents the energy due to bond stretching, Uh the en-
ergy due to bond angle bending, Uu the energy due to dihedral angle
torsion, Ux the energy due to out-of-plane torsion, and Uvdw the en-
ergy due to nonbonded van der Waals interactions.

Under the assumption of small deformations, the harmonic
approximation is adequate for describing potential energy (Gelin
[19]) and therefore characterizes the force field. By adopting the
simplest harmonic forms and combining the dihedral angle torsion
with the out-of-plane torsion into a single equivalent term, the fol-
lowing terms describe the total potential energy:

Ur ¼
1
2

krðDrÞ2; d2Ur

dDr2 ¼ kr; ð6Þ

Uh ¼
1
2

khðDhÞ2; d2Uh

dDh2 ¼ kh; ð7Þ

Us ¼ U/ þ Ux ¼
1
2

ksðD/Þ2; d2Us

dDs2 ¼ ks; ð8Þ

where kr, kh, and ks are the bond stretching, bond angle bending,
and torsional resistance force constants, respectively, while Dr, Dh,
and D/ represent the bond length, bond angle, and twisting bond
angle variations. In contrast to the other bonded interactions, the
van der Waals interactions and the electrostatic forces may be ne-
glected due to their minor effects in terms of predicting the dy-
namic response of CNTs.

The second derivatives of the potential energy terms in Eqs.
(6)–(8) with respect to bond length, bond angle and twisting
bond angle variations produce the spring stiffness coefficients
kr, kh, and ks, according to Castigliano’s theorem. These force field
constants are consistent with the molecular mechanics, which
can be straightforwardly introduced in nanosprings as spring
stiffness constants. The angle bending interaction is simulated
with an axial nanospring, using the simplification described in
[15]. The stiffness kb of the specific spring is described by the fol-
lowing equation:

kb ¼
1

ac—c cosð90
� � cÞ

� �2

kh; ð9Þ

where c = 30� in the hexagonal lattice of the graphene. This angle
may vary for each C–C–C microstructure in a CNT according to its
type and radius, due to its cylindrical shape. The spring stiffness
coefficients of Eqs. (6)–(9) are taken to be equal to kr = 6.52 �
10�7 N nm�1, kh ¼ 8:76� 10�10 N nm rad�2 (Cornell et al. [20]),
and ks ¼ 2:78� 10�10 N nm rad�2 (Cornell et al. [20] and Jorgensen
and Severance [21]), respectively. In order to simulate the inertia ef-
fects, a point mass equal to a whole or half of the carbon atomic nu-
cleus mass (m ¼ 1:9943� 10�26 kg) is added to one node in
particular elements only. The masses of electrons are neglected.
The analytical description of the spring–mass modeling of a CNT
hexagonal lattice is reported in [8].

The interlayer interaction is described by the van der Waals po-
tential. The Lenard–Jones 6–12 potential is utilized to express the
interaction of carbon atoms located on different walls

UðRÞ ¼ 4e
r
R

� �12
� r

R

� �6
� �

; ð10Þ
where R is the interatomic distance, and e and r are the Lenard-
Jones parameters. For carbon atoms, the parameters are e ¼
3:8655� 10�13 N nm and r ¼ 0:34 nm, respectively [7]. Let R1 be
the initial distance between two carbon atoms located in different
walls. We consider a nanospring with initial length R1 in order to
describe the van der Waals interaction. Consistent with the stiffness
definition of the proposed nanospring, we define kvdw as the stiff-
ness coefficient, obtained from the second derivative of the van
der Walls potential energy for distance R1 as follows:

kvdw ¼
d2UðR1Þ

dR2
1

¼ 24e 26
r12

R14
1

� 7
r6

R8
1

 !
; ð11Þ

Given this van der Waals potential, we claim that when the distance
R is larger than 2.5r = 0.85 nm, the effect of the van der Waals force
can be neglected. Hence, van der Waals nanosprings are created for
the pairs of atoms between different layers that exhibit distances
smaller than 2.5r.

3.2. Computer implementation

In order to evaluate the vibrational characteristics of MWCNTs,
we must develop equations that describe the dynamic equilibrium
of the entire model. The elemental equations must be constructed
first before the global stiffness and mass matrices can be
assembled.

The elemental equation for the ai-element, as defined and
developed in [8] to represent the bond stretching as well as twist-
ing bond angle interactions, is

krI20 0
0 ksI20

� �
u
h

� �
þ

mrI21 0
0 0

� �
€u
€h

� �
¼

F
T

� �
or kaUþma

€U ¼ P;

ð12Þ

where

I20 ¼
1 �1
�1 1

� �
; I21 ¼

0 �1
0 1

� �
; ð13Þ

mr is the concentrated mass equal to the half or whole mass of the
carbon nuclei [8], F represents the forces applied to nodes 1 and 2 of
the element, u is the vector of nodal displacements (u ¼ u1 u2½ �T,
F ¼ F1 F2½ �T), h is the vector of nodal rotations, T is the vector of
the applied torsional moments (h ¼ h1 h2½ �T, T ¼ T1 T2½ �T), U is
the vector of nodal translations and rotations, €U is the vector of no-
dal accelerations, P is the column vector of loads, and finally, ka and
ma are the elemental stiffness and mass matrix, respectively. Simi-
larly, the equation for the bi-element, which describes the bond an-
gle interaction in the hexagonal lattice, is

kbI20 0
0 0

� �
u
h

� �
þ

0 0
0 0

� �
€u
€h

� �
¼

F
T

� �
or kbUþmb

€U ¼ P;

ð14Þ

where

kb

¼
kb1; when b-element is straight in respect to the hexagonal cell
kb2; when b-element is slant in respect to the hexagonal cell

	

is the stiffness coefficient, as described in [15], and kb and mb are
the corresponding elemental stiffness and mass matrix, respec-
tively. Note that mb is a null matrix.

Moreover, we must derive the elemental equation for the van
der Waals nanosprings (vdw elements). Because this spring is only
translational, we can write the elemental equation as follows:
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Fig. 1. MWCNT: (a) 3D geometry, (b) 3D model without vdw elements, and (c)
model cross-section.
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kvdwI20 0
0 0

� �
u
h

� �
þ

0 0
0 0

� �
€u
€h

� �
¼

F
T

� �
or kvdwUþmvdw

€U ¼ P;

ð15Þ

where the mass matrix mvdw is a null matrix. Here, it has to be no-
ticed that the ai-elements (Tq. (12)) include all the necessary inertia
effects deriving from carbon atoms in a nanotube structure, while bi

and vdw elements (Eqs. (14) and (15), respectively) include only
stiffness and no inertia terms (null mass matrices). According to
the detailed description presented in [8], this technique ensures
that a mass, which equals to carbon atomic nucleus, exists at every
node – atom position after the assembly procedure.

Hence, the elemental matrices expressed in the global coordi-
nate system are

Ka ¼ TTkaT

Ma ¼ TTmaT

Kb ¼ TTkbT

Kvdw ¼ TTkvdw;

ð16Þ

where T is the appropriate transformation matrix, as defined in [8].
The displacements and rotations as well as the loads are related by
the equation

U ¼ TD; R ¼ TTP; ð17Þ

where D is the vector of displacements and rotations and R is the
vector of loads with respect to the global coordinates. The super-
script T in the above equations denotes matrix transposition. Final-
ly, the elemental equations in the global system become

KaDþMa
€D ¼ R; ð18Þ

KbDþMb
€D ¼ R; ð19Þ

KvdwDþMvdw
€D ¼ R: ð20Þ

We assemble the global stiffness K and global mass matrices M
from the above elemental matrices. Considering undamped free
vibration for the tubes, the equation of motion becomes:

M€Xþ KX ¼ 0: ð21Þ

After applying the CNT support conditions, the eigenvalue prob-
lem can be solved using common finite element procedures. The
solution to the eigenvalue problem reveals the natural frequencies
of vibration and the corresponding mode shapes.

Fig. 1 shows an example of the proposed modeling technique.
Fig. 1a shows the geometry of an armchair (3,3)-(8,8)-(13,13)
MWCNT with length L = 11 nm. Fig. 1b depicts the corresponding
model, which includes only those nanosprings that simulate the
behavior of the individual layers. Due to the large number of vdw
elements, they are best illustrated in cross-section (Fig. 1c). Table
1 presents information about some of the finite element meshes
utilized in the analysis.

4. Results and discussion

First, in order to validate the proposed method, we compare the
results obtained from the present method with outputs from other
theoretical approaches based on molecular or continuum mechan-
ics, as shown in Table 2. In the results of the studies [13,14], the
nanotube type is not specified, obviously, because they are contin-
uum approaches. In order to compare with them, we use zigzag
(9,0)-(18,0) nanotubes presenting similar number of layers and
dimensions (length and diameter). Further, the comparison is lim-
ited in terms of fundamental frequencies because the other meth-
ods obtain a different sequence of vibration modes. This is mainly
because of differences in formulation as well as the presence of
new modes that are not reported in the other methods. Very good
agreement is shown between results for different support
conditions.

First, we describe the shapes of the basic vibration modes for
the usual clamped-free and clamped–clamped support conditions.
Starting from the clamped–clamped case, Figs. 2 and 3 illustrate
the modes of vibrations that may be basic depending on the geo-
metric characteristics. The illustrated tube is an armchair (3,3)-
(8,8)-(13,13) MWCNT with length L = 11 nm. Fig. 2 depicts modes
that are important mainly for larger aspect ratios. Fig. 2a and b
represents the first and second bending mode, where the tube
shows a half-sine and full-sine shape, respectively, and behaves
more like a beam. Fig. 2c illustrates the twisting (torsional) mode
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Table 1
Finite element meshes used in our analysis.

Nanotube type Di (nm) Do (nm) L (nm) ‘ Number of nodes Number of
ai elements

Number of
bi elements

Number of vdw
elements

Total number
of elements

Armchair 0.4 1.8 11 3 4329 6432 12,768 220,413 239,613
0.4 1.8 23 3 9024 13,488 26,880 467,703 508.071
1.8 2.4 17 2 8618 12,865 25,606 312,138 350,609
1.1 2.4 17 3 10,842 16,185 32,214 525,785 574,184
0.4 2.4 17 4 11,676 17,430 34,692 821,415 885,213

Zigzag 0.4 1.8 12 3 4746 7056 13,505 234,249 254,810
0.4 1.8 24 3 9492 14,154 27,178 544,930 586,262
1.8 2.4 15 2 7755 11,550 23,045 271,643 306,238
1.1 2.4 15 3 9729 14,490 28,911 455,966 499,367
0.4 2.4 15 4 10,434 15,540 30,301 691,260 737,101

Table 2
Comparison of fundamental frequencies of MWCNTs resulting from different theoretical approaches*.

Nanotube type Di (nm) Do (nm) L (nm) Support condition
of inner CNT

Support condition
of outer CNT

Fundamental frequency (THz)

Present Other studies

Zigzag 0.4 1.1 3.9 C–C C–C 0.9410 0.9446 [7]
0.4 1.1 5.6 C–C C–C 0.5932 0.5774 [7]
0.4 1.1 8.0 C–C C–C 0.3467 0.3337 [7]

Armchair 0.4 1.1 4.1 C–C C–C 0.9478 0.9276 [7]
0.4 1.1 5.5 C–C C–C 0.6410 0.7355 [7]
0.4 1.1 8.0 C–C C–C 0.3551 0.3323 [7]

Zigzag 0.7 1.4 14 Free C–C 0.1582 0.1665 [14]
0.7 1.4 14 Free C–F 0.0288 0.0270 [14]
0.7 1.4 14 C–C C–C 0.1661 0.1718 [14]

Zigzag 0.7 1.4 20 C–C C–C 0.04 �0.03 [13]

* Numbers in parentheses denote the corresponding reference.

Fig. 2. Beam-like modes of vibration of clamped–clamped supported MWCNTs: (a) first bending, (b) second bending, (c) first twisting, and (d) first axial modes.
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shape of vibration, in which the atoms move in the same circum-
ferential direction with a simultaneous increase in the radius of
every layer of the MWCNT. The maximum increase in the radius
is observed on the half length of the tube. The first axial mode



Fig. 3. Breathing modes of vibration of clamped–clamped supported MWCNTs: (a) first radial, (b) second radial, (c) first triangular, and (d) first cross modes.
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(Fig. 2d) is accompanied by a simultaneous movement of all atoms
in the longitudinal direction. In the second axial mode, we note
longitudinal movement of the vectors towards the center of the
tube. Fig. 3 depicts modes that are basic mainly for smaller aspect
ratios. Fig. 3a and b represents the first and second radial breath-
ing mode, respectively. In the first, the atoms at the half-length of
the tube exhibit the greatest displacement due to the fixed-end
boundary constraints. The second mode has a vase-like shape.
Fig. 4. Beam-like modes of vibration of clamped-free supported MWCNTs: (a) fi
Fig. 3c and d illustrates the first triangular and first cross mode
shapes of vibration (this terminology is consistent with that used
in [8] and refers to the corresponding modes of the SWCNT vibra-
tions). These mode shapes are basic and sometimes fundamental.
In the triangular mode, a triangle-like shape is observed at every
cross-section of the tube, while in the cross mode, a cross shape
is correspondingly observed at every cross-section. To the authors’
best knowledge, this is the first time that these modes have been
rst bending, (b) second bending, (c) first twisting, and (d) first axial modes.
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obtained and presented in the literature regarding MWCNT vibra-
tions. We note the presence of mode shapes of vibration that differ
from the conventional ones as seen in a beam of macro-scale
dimensions.

For the clamped-free support condition, the basic mode shapes
of vibration will be described for a zigzag (5,0)-(14,0) double-
walled CNT with length L = 15 nm and using a much higher aspect
ratio than the previous example. Fig. 4 correspondingly depicts
modes that are basic for large aspect ratios. Fig. 4a and b illustrates
the first and second bending mode shapes. These are similar to the
bending modes presented in a macro-scale cantilever beam. The
twisting modes (Fig. 4c) exhibit a behavior similar to the
clamped–clamped case, but the shapes differ because of the free
end. The first axial mode (Fig. 4d) is accompanied by a simulta-
neous movement of all atoms in the longitudinal direction and
changing tube length during the vibration. In the cantilever case,
there also exist breathing modes (Fig. 5). Some of these are de-
formed mainly at the free end. Depending on the circumstances,
the free end takes on elliptical (Fig. 5a, first radial breathing mode),
triangular-like (Fig. 5c, first triangular mode), cross-like (Fig. 5d,
first cross mode), or more complicated shapes for higher frequen-
cies. Fig. 5b illustrates the second radial breathing mode, which can
also be basic. The second triangular and cross modes present sim-
ilar behavior to the second radial mode; however, they exhibit tri-
angular-like and cross-like cross-sections, in contrast to the
elliptical shape of the radial breathing mode.

The next set of results refers to the natural vibrational frequen-
cies (f = x/2p) of the MWCNTs. In Fig. 6, the effect of aspect ratio on
an armchair (3,3)-(8,8)-(13,13) CNT is shown. Fig. 6a illustrates the
behavior of major natural frequencies for different lengths and for
the clamped–clamped support condition. We note that the greater
the length, the lower the bending, axial, and twisting (torsional)
natural frequencies. The radial type modes (i.e., the first radial as
well as the cross and triangular modes) reach an almost constant
value beyond a limiting length size. Hence, for large lengths, the
first bending, first axial, and first twisting frequencies are lower
than the radial ones. Consequently, the nanotube behaves like a
Fig. 5. Breathing modes of vibration of clamped-free supported MWCNTs: (a)
beam. For small lengths, the breathing (radial, triangular, and
cross) modes became basic. Fig. 6b illustrates similar frequency
variations for the clamped-free support condition. Here, the nano-
tube is a zigzag (5,0)-(14,0)-(23,0) MWCNT.

In order to investigate the influence of the number of layers on
the vibration characteristics of a nanotube, CNTs of the same as-
pect ratio (i.e., the same length and outer diameter) were chosen
for analysis with the proposed technique. Fig. 7a depicts how the
natural frequencies change for armchair tubes of length
L = 17 nm and outer diameter Do = 2.45 nm when subjected to a
clamped–clamped support condition. It is observed that the lower
the number of layers, the lower the frequency of the first radial
breathing, second radial breathing, first triangular, and first cross
modes. In contrast, the higher the number of layers, the lower
the frequency of the first bending, second bending, first twisting,
and first axial modes. As the number of layers increases, the tube
tends to behave more like a beam. Note that for tubes with only
one layer (SWCNTs), the basic modes are the first triangular, the
first cross, and the first radial breathing shapes. Fig. 7b illustrates
similar variations for the clamped-free support condition. Here,
the tube has length L = 15 nm and outer diameter Do = 2.5 nm. In
this case, the frequencies are certainly lower, as expected with
the less strict support condition. We also note that non-coaxial
mode shapes are revealed, together with modes for which the in-
ner layers exhibit different shapes from the outer ones. These are
not analytically described because they are not basics modes of
vibration.

The nature of the support condition remains unclear in the con-
text of CNT applications. When the support is clamped, all degrees
of freedom (d.o.f.) of the supported nodes are fixed. However, the
tube will be supported in an elastic medium, which may exhibit
a stiffness that is smaller than that of the tubes. Consequently,
the support will be more elastic and not fixed. In order to examine
how the vibrational frequencies are impacted by an elastic support
condition, we introduce additional two-node elements. These have
zero initial length, i.e., the two nodes are coincident. The stiffness
matrix of these elements is as follows:
first radial, (b) second radial, (c) first triangular, and (d) first cross modes.
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Fig. 6. Natural frequencies vs. aspect ratio of (a) a clamped–clamped supported
armchair (3,3)-(8,8)-(13,13) CNT, and (b) a clamped-free supported zigzag (5,0)-
(14,0)-(23,0) CNT.
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Fig. 7. Natural frequencies of (a) a clamped–clamped armchair CNT with
Do = 2.45 nm and L = 17 nm, and (b) a clamped-free zigzag CNT with Do = 2.5 nm
and L = 15 nm with a different number of layers.
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The element has six d.o.f. per node, i.e., three translational and three
rotational, where k is the stiffness at every translational d.o.f. The
rotational d.o.f. have stiffnesses equal to the bond angle bending
resistance force constant. The stiffness k takes on various values
that are multiples of the carbon–carbon bond stretching constant,
which is the major atomic nanotube interaction and is the stiffest
observed bond interaction in nature. These elements are positioned
at the supported nanotube end. The first node is fixed, while the
second is the node that simulates a single atom of the tube end.
Hence, the support condition for the nanotube is elastic, with a stiff-
ness equal to that of the above element. Fig. 8 illustrates how the
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Fig. 8. The effect of elastic support conditions on vibration frequencies for (a) an
armchair (3,3)-(8,8) CNT with length L = 15 nm supported at both ends, and (b) a
zigzag (5,0)-(14,0) CNT supported at one end.
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Fig. 9. The effect of van der Waals interactions on the natural frequencies of a
clamped–clamped supported (3,3)-(8,8) double-walled CNT.
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dimensionless frequency f/f0 for each of the basic modes may be
influenced with respect to the stiffness of the elastic support condi-
tion. f is the frequency obtained from the eigenvalue analysis of the
elastically supported tube and f0 is the frequency of the correspond-
ing mode obtained from the analysis of the same clamped sup-
ported nanotube. Fig. 8a and b depict the behavior of an armchair
nanotube with both ends elastically supported and the behavior
of a zigzag nanotube with only one end elastically supported. We
note a real decrease in the frequencies as the support becomes more
elastic. If the stiffness of the rotational d.o.f. changes, there is no
remarkable difference in the frequencies.
Finally, we investigate the influence of the van der Waals ele-
ments on the vibration behavior of multi-walled nanotubes. In
Fig. 9, part of the van der Waals elements are taken into consider-
ation by eliminating those elements that have length greater than a
distance a. We then calculate the natural frequencies f. f0 is the cor-
responding frequency that results when all of the van der Waals
elements are included in the model. The studied nanotube is a
(3,3-8,8) CNT of length L = 11 nm. We note that our calculations
overestimate the frequency f for all mode shapes. The breathing
modes are influenced mainly when the discrepancy exceeds 20%.
This observation suggests that the van der Waals interactions must
be fully included in any model that is used for vibration analysis of
MWCNTs. Specifically, it should not be omitted in order to achieve
better computational efficiency.
5. Conclusions

In this paper, a linear spring-based model with lumped masses
was developed to evaluate the vibrational characteristics of
MWCNTs. Specifically, nanosprings were used to simulate the dy-
namic behavior of the nanotube layers, and van der Waals nano-
springs were developed to model the interlayer interactions. The
mode shapes and natural frequencies were obtained by solving
the eigenvalue problem. Our results suggest additional basic mode
shapes for MWCNTs (for example, triangular or cross mode
shapes), in addition to the usual mode shapes reported elsewhere.
The aspect ratio and number-of-layers were observed to play an
important role, significantly influencing the basic modes of vibra-
tion of the nanotubes. We examined the effects on the computed
frequencies and mode shapes of different constraints at the nano-
tube ends. We demonstrated the remarkable effect (in terms of de-
creased natural frequencies) of elastic support conditions on the
vibrational frequencies of MWCNTs. We investigated the influence
of van der Waals interactions and concluded that the presence of
all corresponding elements is necessary in the vibration analysis
of MWCNTs. This is particularly true for investigations that explore
the relevant breathing modes.
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