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Direct brute-force equilibration of well-entangled polymers is beyond the reach of the modern computa-
tional power because of slow reptation dynamics exhibited by high molecular weight chains. We have
introduced a fast protocol to prepare well-equilibrated entangled polymer melts of various architectures.
A soft, DPD-like potential is used to quickly equilibrate the melt at intermediate length-scale following
with a replacement of the DPD potential with Lennard–Jones potential. The equilibrated structure is then
subjected to a short MD simulation run that relaxes the melt configuration at the short length-scale. The
topological characteristics of the final melt structure are excellent, and the method found to be compu-
tationally competitive to other state-of-the-art equilibration techniques.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A major objective of computer simulations in the polymer sci-
ence is to understand structure–property relationships for poly-
mers with high molecular weight (MW). Some important
industrial polymers, such as ultra high molecular weight polyeth-
ylene, have very long polymer chains with MW of 1000,000 or
more. Mechanical properties of these polymers are dominated by
topological constraints or entanglements. Direct atomistic model-
ing of dynamics of entangled polymers is still unattainable due
to slow reptation dynamics exhibited by the high MW polymer
chains of length N. The polymers diffusivity, D, decreases for longer
chains according to the well-known relation D / N�2.3 [1]. The
calculation of polymer diffusion becomes feasible by using
coarse-graining models that combine groups of atoms into a single
particle or bead. This approach allows sampling longer time scales
and larger system sizes, thus significantly reducing the computa-
tional time. Nevertheless, even for a case of coarse-grained chains,
brute-force equilibration of well-entangled polymers can be pro-
hibitively expensive.

Standard method (fast ‘push-off’) to equilibrate the polymer
melt consists of fast introduction of the excluded volume into an
ensemble of phantom chains with the correct end-to-end distance.
This procedure yields chain deformation on the short to intermedi-
ate length scales [2]. Modern methods employ Monte Carlo-
Molecular Dynamics (MC-MD) hybrid algorithms, which include
the chain connectivity altering techniques (‘double-bridging’ algo-
rithm), and those schemes are significantly faster than simple MD
equilibration [2–4]. However, the bridging algorithms employ a set
of complex moves with very low acceptance ratio. Recently, several
ll rights reserved.
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other algorithms were proposed to equilibrate well-entangled
polymers, such as polymerization-like polymer growing tech-
niques [5,6] and iterative method of affine scaling and equilibra-
tion [7,8]. Another attractive approach is slow ‘push-off’ method
of phantom chains with correct end-to-end distance [2]. This
method consists of MC moves that change position and orientation
of phantom chains and subsequent MD simulation that removes
spatial overlap by using modified Lennard–Jones potentials.

In this Letter, we introduce a fast protocol called ‘DPD-push-off’
to prepare well-equilibrated melts. This method is an extension of
the slow ‘push-off’ method developed by Auhl et al. [2]. The main
ideas of our approach are (1) to generate initial configurations that
closely match equilibrium structures at large length scales so the
MD simulation is only needed to relax the short to intermediate
length scale configurations and (2) allow chains to pass through
each other to speed up the polymer dynamics. Initially, we perform
short simulation runs with soft repulsion potential used in Dissipa-
tive Particle Dynamics (DPD), UDPD [9], on an ensemble of polymer
chains with the correct end-to-end distance. After a gradual
increase of the strength of the DPD potential, short simulation with
target coarse-grained potential was performed. The idea of applica-
tion of soft repulsive potentials for equilibration of polymer melts
has been used earlier with parallel tempering MC technique, but
this method has not been particular computationally efficient
[10]. Here, we show that use of the soft potential is very effective
if the potential is applied to the initial configurations that closely
match equilibrium structures at large length scales.

The DPD-push-off algorithm does not contain MC moves, and it is
fast and simple to implement with MD parallel simulators. Since our
simulation approach preserves chain connectivity, it is not restricted
to the linear polymers and therefore suitable for polymers of any
complex architecture. We have demonstrated applicability of the
method to equilibrate structure of a branched star polymer.
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2. Model and methods

Polymer chains are represented with the coarse-grained bead-
spring model of Kremer–Grest (K–G) [11].

In the K–G model, the pair interaction between topologically
nonconnected particles is described by the standard truncated
Lennard–Jones pair potential:

ULJðrÞ ¼
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where e is the depth of the potential well, r is the distance where
interparticle force is zero, and rc represents the cutoff distance. Both
the e and r are set to 1. The choice of rc = 21/6r yields so-called
Weeks–Chandler–Andersen excluded volume potential, UWCA.

Topologically bound monomers interact according to the stan-
dard FENE/Lennard–Jones bonded potential, UFENE/LJ. UFENE/LJ(r) = U-
FENE(r) + UWCA(r) and

UFENEðrÞ ¼
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where UFENE is finite extensible nonlinear elastic potential. The stan-
dard parameter values for R0 = 1.5r and a = 30e/r2 were used. Dur-
ing all stages of our melt preparation, we have used molecular
dynamics (MD) with DPD thermostat [12,13]. In a DPD simulation
of polymers, particles interact with each other via a pairwise,
two-body, short-ranged force, F, that is written as the sum of a con-
servative force, FC, dissipative force, FD, and random force, FR, as
follows:

Fi ¼
X
j–i

FC
ij þ

X
j–i

FD
ij þ

X
j–i

FR
ij: ð3Þ

The conservative force, FC, can be derived from excluded vol-
ume potential UWCA or a soft repulsion potential UDPD. FC also in-
cludes a contribution from bonded particles (FFENE). The
remaining two forces, FD and FR provide the thermostat in the
DPD method. The dissipative force slows down the particles move-
ment by decreasing their kinetic energy. This effect is balanced by
the random force due to thermal fluctuations. FD and FR are given
by:

FD
ij ¼ �cxDðrijÞðeijvijÞeij; ð4Þ

and

FR
ij ¼ rRxRðrijÞnijeij; ð5Þ

where xD(r) and xR(r) are weight functions, c is the friction coeffi-
cient, rR is the noise amplitude, and nij is the GAUSSIAN random num-
ber with zero mean and unit variance that is chosen independently
for each pair of interacting particles. Here the vectors vij = vi � vj are
the velocity differences between particle i and j.

Español and Warren showed that the system samples the
canonical ensemble and obeys the fluctuation–dissipation theorem
if the following relations hold [14]:

xDðrÞ ¼ ½xRðrÞ�2; ð6Þ

and

r2 ¼ 2ckBT; ð7Þ

where T is the temperature and kB is Boltzmann’s constant. xR(r) is
typically chosen as:

xRðrÞ ¼
1� r

rc
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All the equilibration stages were done with T = 1r/kB and
c = 4.5. Time steps were DtDPD = 0.01sDPD and DtLJ = 0.01sLJ. We
measured time in terms of characteristic sLJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2=e

p
and

sDPD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2

c =kBT
p

.
All simulations were executed using LAMMPS, a molecular

dynamics program from Sandia National Laboratories [15].

2.1. Algorithm for preparation of equilibrated polymer melts

The DPD-push-off algorithm includes polymer building and
equilibration techniques, and it consists of the following four
stages:

(1) Polymer chains are generated inside a periodic cubic box
with the correct end-to-end distance R2(n) on large length
scales,
R2ðnÞ ¼ l2C1n; ð9Þ

where n is a number of bonds, l is a bond distance, and Cn is
the Flory characteristic ratio and Cn = C1 at n ?1. For freely
rotating chain model (FRC), C1 is calculated from the relation
C1 ¼ 1þhcoshi

1�hcoshi, where h is a bond angle [1]. The fully flexible
Lennard–Jones chains used in this work are characterized
with rc = 21/6r and C1 = 1.88.

Chains are built via non-reversal-random-walks [2] in 3D

space with a random angle a = p � h that is sampled around
hcos ai. The standard number density for coarse-grained
polymer melts [11], q = 0.85r�3 was selected.
(2) Short simulations of the melts prepared at stage 1 are car-
ried out by substituting UWCA for nonbonded particles with
a soft repulsion potential in a form that is commonly used
in DPD, UDPD:

�

UDPDðrÞ ¼

aDPD
2 rcð1� r

rc
Þ; r 6 rc

0; r P rc;
ð10Þ
(3) where maximum repulsion parameter aDPD is set to 25 kBT
and cutoff radius rc is equal to 1 in the length units [9]. At
this stage, the simulation time was tsim

2 ¼ 500sDPD. Next stage
is a fast ‘push-off’ to the full Lennard–Jones potentials by
gradual increase of the strength of DPD potential from
aDPD = 25 kBT to aDPD = 1000 kBT. The fast ‘push-off’ time
was tsim

3 ¼ 5:5sDPD, the shortest time interval to switch to full
Lennard–Jones without generating numerical instabilities.

(4) In the final stage, the MD simulation with the UWCA potential
was performed for time equal to tsim

4 ¼ 104sLJ . This procedure
improved structure on the short length scale caused by
usage of the UDPD potential.

In Section 3, we have justified our choice of tsim
2 and tsim

4 .

2.2. Model development

We compared a topology of the melts obtained by two different
methods: (1) DPD-push-off method and (2) brute-force equilibra-
tion. Validation of the DPD-push-off algorithm was conducted for
a melt with M = 500 chains of N = 500 beads. Simulation box was
chosen as 66.5 � 66.5 � 66.5 r3. The calculated topological charac-
teristics were averaged from the six different initial configurations.

3. Results and discussion

The structure of melt obtained with the brute-force method is
considered to be a reference structure for topological analyses, as



Figure 1. Mean-square displacements (MSD) for a melt M = 500 chains of length
N = 500. Triangles, squares and circles represent MSD of the inner monomer, g1(t),
the inner monomer with respect to center of mass, g2(t,) and center of mass, g3(t),
respectively.
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described below. For the brute-force equilibration, the long MD
simulations were performed, and motion of the chains were
Figure 2. Mean square internal distances hR2(n)i/n for a melt with M = 500 chains of len
and solid diamonds represent a chain in the beginning (t = 10sDPD) and at the end of stag
to the chain after ‘push-off’ (stage 3). Circles correspond to the final structure after stage
melt prepared by our method using UDPD (solid circles) and Ucos (open circles). The refer
evaluated by computing mean-square displacements (MSD), gi(t).
Displacements of the polymer were calculated from:

g1ðtÞ ¼ h½riðt0 þ tÞ � riðt0Þ�2i
g2ðtÞ ¼ h½ðriðt0 þ tÞ � rcðt0 þ tÞÞ � ðriðt0Þ � rcðt0ÞÞ�2i ð11Þ
g3ðtÞ ¼ h½rcðt0 þ tÞ � rcðt0Þ�2i;

where g1(t), g2(t), g3(t) are MSD of inner monomer, inner monomer
with respect to center of mass, and the chains’ center of mass,
respectively. Since an entangled chain relaxes at the relaxation
time, td if g1(t) / t1 [1], the simulation was carried out for time long
enough that g1(t) / t0.93 (the run time was t = 6.5 � 106sLJ). Figure 1
shows that simulation was carried out for time long enough that the
chains moved three times their own size. The brute-force generated
structures were averaged from six conformations of long equili-
brated melt taking coordinates at simulation times equal to
t = 4 � 106, 4.5 � 106, 5 � 106, 5.5 � 106, 6 � 106, 6.5 � 106 sLJ.The
mean square internal distances of chains hR2(n)i/n were computed
to characterize the chain conformations. hR2(n)i/n was averaged
over all possible combinations of segments of size n = |i � j| along
the chains, where i < j e [1, N] are monomer indices [2]. Since
hR2(n)i/n it is nearly independent of chain length, N for a given
chemical distance n = |i � j|, this metric is an excellent indicator of
chain configuration at all length scales [2]. hR2(n)i/n has been
gth N = 500. (a) Evolution of hR2(n)i/n throughout the preparation procedure. Open
e 2 (t = 500sDPD) – simulation with soft potential, respectively. Triangles correspond
4 (t = 104sLJ). The results are shown for one initial conformation. (b) hR2(n)i/n for the
ence melt is shown with solid line. Results are averaged over six conformations.



Table 1
Evolution of chain topology throughout the preparation procedure: primitive path
dimensions hLPPi, entanglement length Ne, and number of kinks hZi for Z1 for a melt
M = 500 chains of length N = 500. Deformed conformation was obtained in the
beginning of stage 2 (t = 10sDPD). The results are shown for one initial conformation.

Conformation hLPPi hL2
PPi

1=2 Ne hZi

Deformed 91.16 93.13 53.82 13.99
After stage 2 70.44 71.93 87.86 9.37
After stage 3 70.34 71.81 88.16 9.33
Final 72.43 74.02 83.56 9.82

Figure 3. Radial distribution function of nonbonded monomers for a melt with
M = 500 chains of length N = 500. Diamonds represent the melt after stage 2.
Triangles and circles correspond to the melt after fast ‘push-off’ (stage 3) and final
structure, respectively. The reference melt is shown with solid line.

Table 2
Chain topology: primitive path dimensions hLPPi, entanglement length Ne, and
number of kinks hZi for a melt M = 500 chains of length N = 500. The equilibrated
reference melt was simulated via MD for t = 6 � 106sLJ.

Method hLPPi hL2
PPi

1=2 Ne hZi

Reference 72.81 74.21 83.14 9.85
DPD-push-off 72.08 73.55 84.56 9.64
DBH* 74.34 75.75 86.10 10.26

* Values for DBH are taken from [18], where Ne was averaged for several chain
lengths.
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subsequently used as a target function in the other studies on equil-
ibration of polymer melts [6–8].

Additionally, the topology of the melt was characterized by
computing the average contour length, Lpp, the entanglement
length, Ne, and the number of ‘interior’ kinks, Z. For this analysis,
Z1 code was utilized [16]. This program performs geometrical anal-
ysis of the melt by calculating the number of interior ‘kinks’ Z [16].
The averaged value of Z, hZi, is proportional to the number of
entanglements [16–18], ne. The Ne value was estimated by using
a ‘classical’ S-coil formula, Ne ¼ ðN � 1Þ hR

2ðNÞi
hLppi2

[19]. The topological
parameters hR2(n)i/n, Lpp, Ne, Z, were measured at all stages of the
DPD-push-off procedure and are reported in Figure 2 a and Table 1.

Analysis of results indicates that the introduction of UDPD at
stage 2 of the equilibration protocol leads to immediate deforma-
tions of polymer chains on the intermediate length scale, produc-
ing a ‘characteristic bump’ in hR2(n)i/n plot (Figure 2a). Figure 3
demonstrates that this deformation of polymer chains is due to
some degree of excluded volume brought into the simulation
system by the repulsive UDPD potential. The local chain stretching
decreases the entanglement length, Ne (Table 1). This significant
deformation of the polymer chains is similar to distortion of the
chain after application of fast ‘push-off’ [2]. However, simulation
time of tsim

2 ¼ 500sDPD is sufficient to remove this ‘bump’ since UDPD

allows chains to pass through each other. This procedure causes
also a modest compression of the chains on the short length scale
(Figure 2a) and reduction of the entanglement density (Table 1).
This compression is due to a soft nature of UDPD that allows beads
to overlap to some extent. Subsequent fast ‘push-off’ (stage 3)
increases separations between monomers, which become large
enough allowing for replacing the UDPD potential with the full Len-
nard–Jones potential (see Figure 3). Interestingly, the fast ‘push-off’
does not significantly modify the structural properties of the melt.
Remarkably, deformation of the chains occurs only at the initial
stage (beginning of stage 1) of simulation as can be seen in Figure
2a and Table 1. Finally, at stage 4, we observe that the MD simula-
tion with the UWCA potential for tsim

4 ¼ 104sLJ removes the distor-
tions of structures on the short length scale caused by use of the
UDPD potential at earlier stages of the procedure (Figure 2a and Ta-
ble 1).

The structural properties of the melt obtained with the DPD-
push-off method are virtually indistinguishable from the reference
melt calculations (see Figure 2b). The mean square bondlength,
hl2i, remains constant during the entire equilibration procedure.
The radial distribution function of the equilibrated and reference
melts are practically identical (Figure 3). Table 2 shows the results
of topological analysis obtained from the Z1 code. The standard
deviations of Ne and hZi for the reference melt were ±2.39 and
±0.13, respectively, and are comparable to values obtained with
the DPD-push-off method of ±2.08 and ±0.13 for Ne and hZi, respec-
tively. The discrepancy between results of our method and refer-
ence, brute-force simulations are within �3% for all topological
parameters, as evident from Table 2. Similar error was found with
respect to the results obtained by double-bridging hybrid (DBH)
algorithm for the same melt [18]. However, the DPD-push-off
method is more efficient and shortens computational time by an
order of magnitude as compared to the DBH simulations.

The mean-square radius of gyration of the melt obtained with
the DPD-push-off method is about one-sixth of its mean-square
end-to-end distance according to the GAUSSIAN expectation [1]:
hR2i
hR2

g i
¼ 5:95. The reference melt has hR

2i
hR2

g i
¼ 5:96.

It is important to mention that instead of the UDPD potential,
other forms of the soft repulsion potentials could be employed in
our method, although that may decrease the computational
efficiency. For example, we have found that a cosine soft potential,
Ucos [2], requires longer simulation time to remove the initial
deformation. The simulation time using UDPD and Ucos were
tsim

2 ¼ 500sDPD and tsim
2 ¼ 5000scos, respectively. Ucos is given by [2]

UcosðrÞ ¼
Acð1þ cosðp r

rc
ÞÞ; r 6 rc

0; r P rc;

�
ð12Þ

where the amplitude Ac = 4e. Surprisingly, the subsequent fast
‘push-off’ (stage 3) from Ac = 4e to 200e for tsim

3 ¼ 10scos [2] does
not deform the chains. Figure 2 b shows that the equilibration with
Ucos, as well as the equilibration with UDPD, produces final chain
configurations that match the reference configurations.

The DPD-push-off method is applicable for polymer chains of
various lengths and architectures. Since internal distances on long
scales (n > 100) are changed only slightly, our approach is valid for
chain of any length. We have built and equilibrated the linear poly-
mers of different chain length with N = 250, 875, 1000, and results



Figure 4. Mean square internal distances hR2(n)i/n for chains of varying length N calculated with the DPD-push-off method. hR2(n)i/n for the reference melt of N = 500
equilibrated for t = 6 � 106sLJ shown as a thick solid line for comparison.
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are presented in Figure 4. We expect the method will be particu-
larly useful in simulations of branched polymers. This was demon-
strated by equilibrating a polymer with four-arm star of arm length
of Narm = 250. This system, indicated as (250 ⁄ 4) in Figure 4, shows
hR2(n)i/n curve similar to other polymers of that size. This is
because the core region of the stars is negligibly small due to the
small number of arms [20], and therefore the arms display struc-
tural characteristics of linear polymers.

We have found that DPD-push-off method is 103 faster than
brute-force equilibration for N = 500. Since the relaxation time of
the entangled melt increases with N as td / N�3.4 [1] and our equil-
ibration time is independent of N, we expect that our method
greatly surpasses the brute-equilibration method for long chains.

4. Conclusions

We have developed a computationally very efficient algorithm
capable of equilibrating long entangled polymer chains of any
architecture. The DPD-push-off algorithm includes polymer build-
ing and equilibration techniques that utilize soft DPD-like poten-
tial, allowing chains to pass through each other. In the final
stages of the algorithm, the soft potential is replaced by the full
Lennard–Jones potential. This procedure yields the melt structure
with topological characteristics very close to those calculated from
reference, brute-force calculations based on the long MD simula-
tions. This approach significantly accelerates the polymer dynam-
ics and makes the method orders of magnitude faster than the
brute-force equilibration technique and faster than the current
state-of-the-art, MC ‘double bridging’ technique. This approach is
easily applicable to any polymer architecture, in particular to
highly branched polymers. In this work, the DPD-push-off method
was applied to generic, bead-spring ‘Kremer–Grest’ chains.
However, the described protocol is general and applicable for any
coarse-grained model.
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