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Static and dynamic properties of dissipative particle dynamics
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The algorithm for the dissipative particle dynamics~DPD! fluid, the dynamics of which is conceptually a
combination of molecular dynamics, Brownian dynamics, and lattice gas automata, is designed for simulating
rheological properties of complex fluids on hydrodynamic time scales. This paper calculates the equilibrium
and transport properties~viscosity, self-diffusion! of the thermostated DPD fluid explicitly in terms of the
system parameters. It is demonstrated that temperature gradients cannot exist, and that there is therefore no
heat conductivity. Starting from theN-particle Fokker-Planck, or Kramers equation, we prove anH theorem
for the free energy, obtain hydrodynamic equations, and derive a nonlinear kinetic equation~the Fokker-
Planck-Boltzmann equation! for the single-particle distribution function. This kinetic equation is solved by the
Chapman-Enskog method. The analytic results are compared with numerical simulations.
@S1063-651X~97!00608-9#

PACS number~s!: 47.11.1j, 51.10.1y, 83.70.Hq, 02.70.Ns
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I. INTRODUCTION

The interest of the last decade in dynamical and rheolo
cal properties of complex fluids has seen the introduction
several new numerical methods for carrying out compu
simulations on hydrodynamic time scales, the simulation
which using molecular dynamics often results in intens
computational demands. These new techniques include~i!
lattice gas cellular automata~LGCA! @1,2#; ~ii ! lattice Boltz-
mann equation~LBE! @3#; and ~iii ! dissipative particle dy-
namics~DPD!.

The last method was introduced by Hoogerbrugge
Koelman@4#, and was modified by Espan˜ol and Warren@5#
to ensure a proper thermal equilibrium state. The prim
goal of this paper is a theoretical analysis and explicit cal
lation of transport and thermodynamic properties in terms
model parameters. This is highly relevant in view of t
current interest in applications of DPD to systems such
flows past complex objects@4#, concentrated colloidal sus
pensions@6,7#, dilute polymer solutions@8,9#, and phase
separation@10#.

The DPD algorithm models a fluid ofN interacting par-
ticles out of equilibrium and conserves mass and moment
Position and velocity variables arecontinuous, as in molecu-
lar dynamics~MD!, but time is updated indiscrete steps
dt, as in LGCA and LBE. The algorithm is a mixture o
molecular dynamics, Brownian and Stokesian dynamics,
LGCA’s, with a collision and a propagation step. In the
collision step each particle interacts with all the partic
inside an action sphere of radiusR0 through conservative
forcesFi j , dissipativeforcesFD,i j , which are proportional
to both the step sizedt and a friction constantg, andrandom
forcesFR,i j , which supply the energy lost by the dampin
Here i , j P$1,2, . . . ,N% label the particles. In numerica
simulations, this is implemented by simultaneously updat
the velocities from their precollision valuevi to their post-
collision valuevi* according to the instantaneous forces e
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erted by all particles inside the action sphere. In the sub
quentpropagationstep of fixed lengthdt all particles move
freely to their new positionsr i(t1dt)5r i(t)1vi* dt. There
are no hard cores and the particles may be considere
completely interpenetrable. These softer interactions h
the computational advantage@4,8# of allowing particle mo-
tion on the order of a mean free pathl 0 during each time step
of fixed lengthdt. This represents a substantial advanta
over event driven MD algorithms for hard sphere fluid
where the lengthdt of the free propagation interval is o
average much shorter, especially at fluid densities.

By ignoring some of the microscopic details of the inte
actions, which are presumably irrelevant for fluid dynami
DPD has the advantages of LGCAs, but avoids the disadv
tages of lacking Galilean invariance and of introducing sp
rious conservation laws. In fact, the ‘‘point particles’’ shou
not be considered as molecules in a fluid, but rather as c
ters of particles that interact dissipatively@4,5#. The intro-
duction of noise and dissipation represents a coarse-gra
mesoscopic level of description and hydrodynamic behav
is expected at much smaller particle numbers than in conv
tional MD. If t0.1/gnR0

d denotes the characteristic kinet
time scale in DPD, withn5N/V the number density,d the
number of dimensions, andg the friction constant, thent0 is
considered to be large compared to any molecular time sc

In this coarse-grained description the dominant inter
tions are the dissipative and random forces, whereas the
servative forces can be interpreted as weak forces of r
tively long range and may be taken into account as a Vla
mean field term in the kinetic equations. In addition, they c
have the spurious effect of tending to force the DPD partic
into ‘‘colloidal crystal’’ configurations, unless friction and
noise are sufficiently large to prevent cooling into a latti
configuration@4,5,11#. In the second half of the paper, whe
we derive a kinetic equation for the single-particle distrib
tion function, the conservative force will be neglected. Th
corresponds to the strong damping limit (g large!. The ran-
1676 © 1997 The American Physical Society
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56 1677STATIC AND DYNAMIC PROPERTIES OF . . .
dom forces act effectively as repulsive forces to prevent c
lapse of DPD particles.

A substantial contribution towards the understanding
the DPD fluid was given by Espan˜ol and Warren@5#, who
derived a Fokker-Planck equation for theN-particle distribu-
tion function in the limit of continuous time (dt→0). These
authors also modified the original algorithm by imposing t
detailed balance conditions, which guarantee the existenc
the proper thermal Gibbs equilibrium, described
exp@2H/u0# whereH is the Hamiltonian of the correspond
ing conservative system andu05kBT0 is the global equilib-
rium temperature. These results are briefly reviewed in S
II to establish the notation. Concerning the macroscopic e
lution equations, Espan˜ol formally established@12# the lin-
earized Navier-Stokes equations and derived Green-K
formulas for the DPD transport coefficients using a Mo
Zwanzig projection operator technique. However, to date
quantitative evaluation of these formulas for DPD seems
exist. Hence, little is known explicitly about the approach
equilibrium, the validity of standard hydrodynamics~system
size dependence, effects of generalized hydrodynamics!, or
about transport coefficients. For the transport coefficie
Hoogerbrugge and Koelman@4# have estimated the kine
matic viscosityn5h/r, whereh is the shear viscosity an
r5nm is the mass density, asn;gnR0

d12 with nR0
d;1.

This result has recently been extended in@13,11# to include
the bulk viscosity by applying the ‘‘continuum approxim
tion’’ to the discrete equations of motion for the DPD pa
ticles, following suggestions of Hoogerbrugge and Koelm
@4#. In Sec. III we show how the free energy of the DPD flu
monotonicallyapproaches its equilibrium value by provin
anH theorem for the Fokker-Planck equation of Espan˜ol and
Warren, and we make the connection with the detailed b
ance conditions derived in@5#.

As a first step towards establishing the full nonlinear h
drodynamic equations we derive in Sec. IV the full mac
scopic conservation laws for mass and momentum den
as well as the energy balance equation~details are given in
the Appendix!. The conceptual basis for the existence of h
drodynamic equations is thelocal equilibriumstate, which in
DPD is very different from that in a molecular fluid, becau
of the unusual role of the temperature. In Sec. V we stud
a quantitative fashion the decay of the energy den
e(r ,t) and ‘‘kinetic’’ temperatureu(r ,t) towards thermal
equilibrium with global temperatureu0, and we assess in
what sense and on what time scale the DPD fluid descr
an isothermalfluid out of equilibrium. This is done on the
basis of a nonlinear kinetic equation—referred to as
Fokker-Planck-Boltzmann~FPB! equation—for the single-
particle distribution functionf (x,t). It will be obtained from
the first equation of the Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy for the DPD fluid in combination
with the molecular chaos assumption.

By solving in Sec. VI the FPB equation in the hydrod
namic stage, using the Chapman-Enskog method, we de
the constitutive relations and the Navier-Stokes equat
This enables us to calculate in Sec. VII the transport coe
cients of shear and bulk viscosity, as well as the s
diffusion coefficient.

So far, we have not discussed thediscrete time versionof
DPD, as implemented in actual simulations. They show
l-
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sensitive dependence of thermodynamic and transport p
erties on time stepdt @13,11,14#. A promising step towards
understanding thedt dependence was recently taken
Marsh and Yeomans@14#, who calculated the equilibrium
temperature as a function of the step size, determined st
ity criteria for the step size, and validated their result
extensive numerical simulations. We shall not attempt
present here a systematic study of the differentO(dt) cor-
rections to equilibrium distributions and transport properti
but postpone this to a later publication.

The paper ends in Sec. VIII with comments on the m
important results and future prospects for DPD.

II. THE FOKKER-PLANCK FORMALISM

The dynamics of a DPD system defines the time evolut
of an N-particle system, specified by a pointG
5$xi5(vi ,r i)u i 51,2, . . . ,N% in phase space, in terms o
stochastic differential equations. For a theoretical descrip
it is more convenient to consider the equivalent Fokk
Planck equation, derived by Espan˜ol and Warren@5#.

To interpret the separate terms in the Fokker-Planck eq
tion, it is instructive first to consider the analogousKramers
equationfor the probabilityP(v,r ,t) of a single particle of
massm, having a phase descriptionx5(v,r ) at time t:

] tP1v•
]

]r
P52

F~r !

m
•

]

]v
P1g

]

]v
•vP1

s2

2

]2

]v2 P.

~1!

The three terms on the right can be interpreted as follo
The first term is an external conservative for
F(r )52¹V(r ). The term involving the damping constan
g corresponds to the Langevin force2gv and the diffusive
term with diffusion coefficient12 s2 results from the random
forcesĵ in the equivalent Langevin description, which rea

dr

dt
5v,

dv

dt
5

F

m
2gv1sĵ, ~2!

where sĵ is Gaussian white noise with amplitudes and

^ĵ&50 and ^ĵ(t) ĵ(t8)&5Id(t2t8), where I is a
d-dimensional unit tensor.

If we impose that the stationary solution of the Krame

equation be the Gibbs distribution:Peq;exp$2@ 1
2mv2

1V(r )]/u0%, then the diffusion coefficient must satisfy th
following detailed balance~DB! condition:

s25
2gu0

m
, ~3!

whereu05kBT0 is the temperature in thermal equilibrium
measured in energy units.

The full Fokker-Planck equation derived by Espan˜ol and
Warren for the DPD system is a direct extension of t
Kramers equation toN interacting particles. The time evolu
tion of the N-particle distribution functionP(G,t) is gov-
erned by
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] tP5~LC1LD1LR!P, ~4!

where the conservative, dissipative, and random parts of
evolution operator are defined, respectively, as

LC52(
i

S vi•
]

]r i
1

Fi

m
•

]

]vi
D

52(
i

vi•
]

]r i
2

1

2 (
i , j Þ i

F~Ri j !

m
•S ]

]vi
2

]

]vj
D ,

LD5 (
i , j Þ i

gwD~Ri j !S R̂i j •
]

]vi
D ~R̂i j •vi j !,

LR5 (
i , j Þ i

s2

2
wR

2~Ri j !S R̂i j •
]

]vi
D R̂i j •S ]

]vi
2

]

]vj
D . ~5!

The summations run over all particles and the only diff
ence to the original@5# is that the parametersg ands have
been scaled by the massm such thatg has the dimensions o
an inverse time. The three terms above are theN-particle
extensions of the three terms on the right hand side of
~1!.

~1! The conservative partLC results from the additive and
central interparticle interactions due to a potent

V5 1
2 ( i , j Þ if(Ri j ) whereRi j 5r i2r j is the relative position

and a hat denotes a unit vector. It is the Liouville operator
the corresponding conservative system and in the limit
zero noise and friction, Eq.~5! reduces to the Liouville equa
tion.

~2! The second term is analogous to the dissipative te
in the Kramers equation. It accounts for the Langevin dam
ing force between the pair (i j ), which is proportional to the
friction constantg and to the component of the relative v
locity vi j along the line of centersR̂i j , and is of finite range.
This last property is described by a positive weighting fun
tion wD(Ri j ) that is only nonvanishing inside an actio
sphere of finite radiusR0.

~3! The last term in Eq.~5! represents the random nois
and should be compared with the diffusive term in Eq.~1!.
The random forcesĵ i j between the pair (i j ) is directed
alongR̂i j and is proportional toswR(Ri j ) where the weight-
ing function wR(Ri j ) is again only nonvanishing within a
finite action sphere.

The ranges of the conservative, dissipative, and rand
forces may all be different as the model stands. Mo
over, one of the essential properties of DPD is that
dynamics conserves total particle numberN and
the total momentum P5( imvi . Consequently, ^N&
5*dxf (x,t) and ^P&5*dxmvf (x,t) are constants of the
motion. The latter is always set equal to 0 as the total sys
is assumed to be at rest. Heref (x,t) is the single-particle
distribution function.

In addition, we want to emphasize that microscopic m
mentum conservation is an essential property of a fl
model if it is to have a momentum densityr(r ,t)u(r ,t) that
is slowly varying in space and time. In contrast, we note t
the energy of the system is not strictly conserved under
DPD algorithm. The equations for the mass, momentum,
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energy density will be discussed more fully in Sec. IV.
typical applications the conservative force may be set eq
to zero. The parametersg and s satisfy Eq. ~3! and the
weighting functions are chosen such thatwD(r )5wR

2(r ),
which constitute in combination with Eq.~3! the detailed
balance conditions for the DPD system, as will be discus
in Sec. III. The density is typically chosen such that there
5 – 10 particles within an action sphere, which means t
the instantaneous total force on any particle is small on
erage.

Figure 1 shows an enlargement of part of configurat
space, showing a sequence of 20 consecutive particle p
tions evolving from a randomly chosen initial configuratio
The trajectories are relatively smooth, in contrast to the d
continuous paths in hard core interactions, illustrating t
the resultant force on each particle is relatively small at t
parameter setting.

III. AN H THEOREM

Consider the following functional of theN-particle distri-
bution functionP(G,t):

F@P#5E dGP~G,t !$H1u0lnP~G,t !%, ~6!

whereu05ms2/2g and H is the Hamiltonian of the corre
sponding conservative system:

H5(
i

1

2
mvi

21V5(
i

1

2
mvi

21
1

2 (
i , j Þ i

f~Ri j !, ~7!

V is the potential energy andf(Ri j ) is the pair interaction.
The functional can be interpreted as a sort offree energy
F5E2u0S, whereE5^H& is the average total energy an
S52^ lnP& yields the total entropy. The goal of this sectio
is to show thatF is a Lyapunov functional with] tF<0 and
to investigate the implications of this result for the equili
rium solution of the Fokker-Planck equation.

FIG. 1. Typical evolution of a particle configuration over a p
riod of 20 time steps, showing that DPD interactions are ‘‘soft’’
compared to hard core interparticle interactions. The circle w
radiusR054 indicates the range of interaction.
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56 1679STATIC AND DYNAMIC PROPERTIES OF . . .
The time derivative of Eq.~6! yields in combination with
Eq. ~4!

] tF5E dG$H1u0lnP1u0%~LC1LD1LR!P~G,t !. ~8!

We observe that the third term inside the curly brackets
Eq. ~8! vanishes due to total probability conservation. Th
consider the contribution$] tF%C to Eq. ~8! due to the Liou-
ville operatorLC . Partial integration with respect tor i and
vi yields directly

$] tF%C52E dG$PLCH1u0LCP%. ~9!

HereLCH5$H,H%50 because the curly brackets repres
Poisson brackets, as can easily be demonstrated. The se
term in Eq. ~9! reduces to surface terms inr i and vi and
therefore vanishes too.

Next, we combine the remaining terms in Eq.~8! and
perform a partialvi integration, also symmetrizing the resu
over i and j . The final result is

] tF52
1

2
mgE dG (

i , j Þ i
H R̂i j •vi j 1

u0

m
R̂i j •S ]

]vi
2

]

]vj
D lnPJ

3FwD~Ri j !R̂i j •vi j 1wR
2~Ri j !

u0

m
R̂i j •S ]

]vi
2

]

]vj
D GP.

~10!

Now we make the following observation. If we choose

wD~r !5wR
2~r ![w~r !, ~11!

where w(r ) is an arbitrary positive function vanishing fo
r .R0, then] tF<0, as the right hand side of Eq.~10!, can
be cast into the form

] tF52
1

2
mgE dGP (

i , j Þ i
w~Ri j !$•••%

2<0, ~12!

where$•••% is the same as in Eq.~10!. Note that the equality
sign applies if and only ifP is the solution of Eq.~13! below.
Consequently, the free-energy-type functionF@P# is a
monotonically decreasing function of time, until it reach
equilibrium whereP5Peq, which is simply the solution of
$•••%50 for every pair (i j ):

H vi j 1
u0

mS ]

]vi
2

]

]vj
D J Peq50. ~13!

Changing variables to the relative velocities of the particl
it is easy to prove that the equilibrium distribution of th
system is separable in the velocities, and has the gen
form

Peq~G!5A~r1 , . . . ,rN!expH 2
1

2u0
(

i
m~vi2u0!2J ,

~14!
n
n

t
ond

,

ral

whereu0 is a constant independent ofr i andt. We will only
consider macroscopic systems which are not in uniform m
tion at long times and consequently limit ourselves
u050.

The functionPeq(G) is also the stationary solution of th
Fokker-Planck equation~4! if A(r1 , . . . ,rN) satisfies
LCA50. This yields the Gibbs distribution as the equili
rium solution:

Peq~G!5
1

Z
expH 2

H

u0
J , ~15!

where H is the Hamiltonian~7! of the system andZ is a
normalization constant. We assume thatPeq is uniquely de-
termined by the requirement that it satisfies Eqs.~13! and
~4!. Consequently the DPD system will always reach t
same equilibrium state if left undriven, independent of t
volume and number of particles. The temperature of t
equilibrium state has a valueu05ms2/2g, which only de-
pends on the parameters of the model. So DPD describ
system, thermostated atu0 and with a free energyF@Peq# at
equilibrium. Note that, in contrast to theH theorem for the
Boltzmann equation~see, e.g.,@15#!, no molecular chaos ap
proximation is required to derive this result for the DP
system.

In their original discussion@5#, Español and Warren im-
posed that the Gibbs distribution be the stationary solution
the Fokker-Planck equation. The consequences of this
quirement can be seen by inserting Eq.~15! into Eq. ~4!. It
leads to the so-calleddetailed balanceconstraint

wD~r !5
s2m

2gu0
wR

2~r !5wR
2~r !5w~r !. ~16!

Consequently, the constraint imposed in Eq.~11! is the de-
tailed balance constraint for DPD. The important result fro
the H theorem is that it demonstrates that the Gibbs dis
bution ~15! is the inevitable equilibrium distribution.
Throughout the rest of the paper we shall restrict ourselve
dealing exclusively with DPD systems that obey the DB co
dition ~16!. If the DB condition is violated, noH theorem
can be derived and the Gibbs distribution is not a station
solution of the FP equation for DPD. In this case, the s
tionary state of the system does not correspond to ther
equilibrium but to some driven state, which will in gener
exhibit long range spatial correlations~see, e.g.,@16–18#!.

The original version of DPD, introduced by Hooge
brugge and Koelman@4#, violates the DB requirement~16!
and therefore its stationary distribution will not approach
Gibbs state but may exhibit spatial correlations, e.g., al
braic correlationsr 2d whered is the number of dimensions
extending far beyond the ranges of the conservative, diss
tive, and stochastic forces. This absence of thermal equ
rium is likely to be the reason for difficulties and inconsi
tencies discussed in@4,5,12#.

IV. MACROSCOPIC CONSERVATION
AND BALANCE EQUATIONS

In the preceding section we have established the existe
of and approach to a thermal equilibrium state for t
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DPD system that obeys the detailed balance condition~16!.
In this section, we address the problem of how the quanti
of macroscopic interest evolve in time towards the fin
equilibrium state, concentrating on the local ma
density r(r ,t)5mn(r ,t), the local momentum densit
r(r ,t)u(r ,t), and the local energy densitye(r ,t).

As discussed in Sec. II the microscopic dynamics of D
conserve mass and momentum, and the corresponding
roscopic densities obey local conservation laws. As the t
energy is not conserved under DPD, the evolution equa
for the macroscopic energy density does not have the form
a local conservation equation, but contains source and
terms corresponding to the random and dissipative for
respectively. In the final equilibrium state, these will balan
each other.

Consider a general macroscopic quantity^A&, defined
through

^A&5E dGA~G!P~G,t !. ~17!

Its time evolution can be obtained from the Fokker-Plan
equation~4! combined with the detailed balance conditio
~16!, by multiplying the Fokker-Planck equation wit
A(G,t), integrating over allG space, and performing one o
two partial integrations with respect tovi andvj . The result
is the general rate of change equation:

] t^A&5K (
i

S vi•
]

]r i
1

Fi

m
•

]

]vi
DAL

2gK (
i , j Þ i

w~Ri j !$R̂i j •vi j %H R̂i j •
]

]vi
J AL

1
gu0

m K (
i , j Þ i

w~Ri j !H R̂i j •
]

]vi
J

3H R̂i j •S ]

]vi
2

]

]vj
D J AL ~18!

for any dynamic variableA(G).
Consider the conserved mass densityr(r ,t)5mn(r ,t)

and the momentum densityr(r ,t)u(r ,t) defined through

n~r ,t !5K (
i

d~r2r i !L 5E dvf ~v,r ,t !,

nu~r ,t !5K (
i

vid~r2r i !L 5E dvf ~v,r ,t !v. ~19!

It is convenient at this stage to introduce the single-part
and pair distribution functions, defined as

f ~x,t !5 f ~v,r ,t !5K (
i

d~x2xi !L ,

f ~2!~x,x8,t !5K (
i , j Þ i

d~x2xi !d~x82xj !L . ~20!

Application of Eq.~18! to the conserved densities in Eq.~19!
yields the macroscopic conservation laws:
s
l
s

ac-
al
n
of
nk
s,
e

k

e

] tr52¹•ru,

] t~ru!52¹•~ruu1P !, ~21!

where¹5]/]r andP is the local pressure tensor or mome
tum flux density in the local rest frame of the fluid. Th
continuity equation has been derived by setti
A5( id(r2r i) into Eq. ~18!. The only nonvanishing term is
the one containing (]/]r i)d(r2r i)52¹d(r2r i), and the
continuity equation follows at once. Derivation of the co
servation equation for the momentum density proceeds a
similar lines by choosingA5( imvid(r2r i). Details of the
latter derivation are given in the Appendix where it is show
that

P~r ,t !5PK~r ,t !1PC~r ,t !1PD~r ,t !, ~22!

with kinetic (K), collisional transfer (C), and dissipative
(D) contributions:

PK5E dvmVV f ~v,r ,t !,

PC5
1

2E dvdv8E dRRF~R! f̄ ~2!~v,r ,v8,r 8,t !,

PD52
1

2
mgE dvdv8E dRw~R!$R•~v2v8!%R̂R̂

3 f̄ ~2!~v,r ,v8,r 8,t !, ~23!

with R5r2r 8. The kinetic flux contains the so-calledpecu-

liar velocity V5v2u(r ,t), and f̄ (2) is the spatially averaged
pair distribution function:

f̄ ~2!~v,r ,v8,r ,t !5E
0

1

dl f ~2!
„v,r1lR,v8,r1~l21!R,t….

~24!

The kinetic and collisional transfer contributions to the m
mentum flux in Eqs.~22! and~23! are present in any particle
model with conservative forces. They are dominant in s
tems with sufficiently high density—dense gases a
liquids—where the potential energy contributions are no
negligible with respect to the kinetic fluxes.

The explicit form for these collisional transfer contribu
tions is given in the literature for several cases: smooth
tentials @19#, elastic hard spheres@20#, or inelastic hard
spheres@21#. The dissipative contributionPD results from
the Langevin-type damping forces between the particles.
random forces do not contribute to the momentum flux.

The H theorem, derived in Sec. III, guarantees the a
proach to thermal equilibrium, where the distribution fun
tions take the form

f ~x!5n0w0~v!5n0S m

2pu0
D d/2

expH 2
mv2

2u0
J ,

f ~2!~x,x8!5n0
2w0~v!w0~v8!g~ ur2r 8u!, ~25!
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whereg(R) is the pair distribution function in thermal equ
librium, n05N/V is the number density, andw0(v) the Max-
wellian velocity distribution.

The sum of the kinetic and collisional transfer contrib
tions reduces to the equilibrium pressure and the dissipa
contribution vanishes. ThusP5p0I with p0 given by the
virial theorem:

p05n0u02
n0

2

2dE dRR
df~R!

dR
g~R!, ~26!

where

F~R!52R̂
df~R!

dR
. ~27!

Away from global equilibrium, the pressure tens
P(r ,t) will contain the local equilibrium pressure and term
involving the viscosities. However, before the Navier-Stok
equations, or more generally, the full set of hydrodynam
equations, can be derived the concept oflocal equilibrium—
which forms the conceptual basis of slow hydrodynam
evolution — has to be reexamined, as the energy is no lon
a conserved quantity. This can only be done after identify
the slow and fast relaxation modes in DPD, on the basis
kinetic equation. This will be done in Sec. V.

Next we consider the energy density, defined as

e~r ,t !5K (
i

e i~v!d~r2r i !L
5E dv

1

2
mv2f ~x,t !1

1

2E dvdv8

3E dRf~R! f ~2!~v,r ,v8,r2R,t ! , ~28!

wheree i(v)5 1
2 mVi

21( iÞ jf(Ri j ) is the microscopic energy
per particle. Use of the rate of change equation~18! leads
after some lengthy algebra to the energy balance equatio
discussed in the Appendix. It reads

] te52¹•q1G. ~29!

Here the explicit form of the source term@22# is

G~r ,t !5gK (
i , j Þ i

w~Ri j !H u02
m

2
$R̂i j •~vi2vj !%

2J
3d~r2r i !L , ~30!

where the term proportional tou0 is a source resulting from
the random force, and the term with the minus sign is a s
resulting from the Langevin-type damping forces. In glob
equilibrium, the source and sink terms balance one ano
and Geq50. The heat currentq, given explicitly in Eqs.
~A12!–~A15! of the Appendix contains the standard kine
and collisional transfer contributions due to conservat
ve

s
c

c
er
g
a

as

k
l
er

e

forces, as well as dissipative contributions analogous toPD
in Eq. ~23!, andq vanishes in global equilibrium.

If G were set equal to zero, Eq.~29! would have the
generic form of the energy balance equation in ordinary
drodynamics, where the heat current would contain a te
proportional to the temperature gradient. As will become
parent in later sections, this is not the case in the DPD s
tem. Although Eq.~29! looks like a macroscopic equation fo
the energy balance in the presence of sources and sink
loses its physical significance after a relaxation timet0, in
which e(r ,t)→(d/2)u0n(r ,t), and Eq.~29! reduces to the
continuity equation. This will be discussed in Sec. VI, belo
Eq. ~41!.

One may also derive a balance equation for the free
ergy density, which would be a local version of theH theo-
rem of Sec. III or of the corresponding one of Sec. V for t
Fokker-Planck-Boltzmann equation. It would enable one
identify the irreversible entropy production. A similar ba
ance equation for the entropy density in a dilute gas can
derived from the Boltzmann equation@23#.

V. FOKKER-PLANCK-BOLTZMANN EQUATION

In this section we derive an approximate kinetic equati
referred to as the Fokker-Planck-Boltzmann equation, for
single-particle distribution functionf (x,t), which is based on
the molecular chaos assumption and has a collision t
which is quadratic inf (x,t).

Moreover, from here on theconservative forceswill be
neglected, which corresponds to the strong damping li
(g large!. Numerical measurements of the two-particle co
relation function@11# have demonstrated that the inclusion
the conservative force can result in the formation of crys
line ordering, which is an undesirable feature in the curr
context of fluid dynamics or rheology of complex fluid
However, these effects may prove important to the ongo
investigation into the static properties of DPD.

This section is organized as follows. We start by derivi
the first equation of the BBGKY hierarchy, which relate
] t f to the pair functionf (2)(x,x8,t). Then themolecular
chaosassumption

f ~2!~x,x8,t !. f ~x,t ! f ~x8,t ! ~31!

yields a closed equation, the FPB equation, which again
isfies anH theorem. Next we analyze thelocal equilibrium
solution of the kinetic equation, which provides the conce
tual basis for the existence of hydrodynamic equations
transport coefficients, as well as the justification for solvi
this kinetic equation for finding the ‘‘normal solution’’ by
means of the Chapman-Enskog method.

The first equation of the BBGKY hierarchy can be d
rived directly by applying Eq.~18! to them-space density:

f̂ ~x!5(
i

d~x2xi !. ~32!

Its average yieldsf (x,t) on account of Eq.~20!. The result-
ing equation of motion is
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] t f 5E dGP~G,t !H (
i

] f̂

]r i
•vi1 (

i , j Þ i
gw~Ri j !

3F2vi j

]

]vi
1

u0

m

]

]vi
S ]

]vi
2

]

]vj
D G f̂ :R̂i j R̂i j J ,

~33!

where the (:) contraction of tensors is defined
A:B5(abAabBba , with a,b denoting Cartesian compo
nents of vectors or tensors. The equation can be further
plified to

] t f 52¹•K (
i

vid~x2xi !L
1g

]

]v
•K (

i , j Þ i
d~x2xi !w~Ri j !R̂i j $R̂i j •vi j %L

1
gu0

m

]2

]v]v
:K (

i , j Þ i
w~Ri j !R̂i j R̂i j d~x2xi !L ,

~34!

where¹5]/]r . Performing the integrals over all variable
exceptxi andxj leads to

] t f 1v•¹ f 5gE dv8E dRR̂R̂w~R!:H ]

]v
~v2v8!

1
u0

m

]2

]v]vJ f ~2!~v,r ,v8,r2R,t !. ~35!

This is the first equation of the BBGKY hierarchy with th
Fokker-Planck equation~4! taking the place of the Liouville
equation as the evolution equation. Under the molecu
chaos approximation~31! we have the following closed
equation for the one-particle distribution function:

] t f 1v.¹ f 5I ~ f ![gE dv8E dRR̂R̂w~R!

3 f ~v8,r2R,t !:H ]

]v
~v2v8!1

u0

m

]2

]v]vJ
3 f ~v,r ,t !. ~36!

The molecular chaos approximation is a mean-field
proximation, which neglects dynamical correlations result
from correlated multiple collisions taking place inside an a
tion sphere. As we have set all conservative forces equa
zero, the molecular chaos assumption is exact in the glo
equilibrium state. Indeed, simulation results show that thi
in fact an excellent approximation in the small-time st
limit ~as shown in Fig. 2!.

It can be shown in a similar fashion to Sec. III that t
functional

F5E dxH 1

2
mv21u0lnf ~x,t !J f ~x,t ! ~37!
-

r

-
g
-
to
al
is

satisfies anH theorem (] tF<0) where the equality only
holds if f (x,t) is given by the equilibrium formn0w0(v) of
Eq. ~25!, which establishes the existence of a unique glo
equilibrium state.

The next problem is to solve the nonlinear FPB equati
and to analyze the approach to equilibrium using
Chapman-Enskog~CE! method. According to this method
one can distinguish two stages in the evolution of the sing
particle distribution functionf (x,t): a rapid kinetic stage and
a slow hydrodynamic stage@24#.

In the kinetic stage,f (x,t) decays within a characteristi
kinetic time t0 to the so-callednormal solution f „vua(r ,t)…
which depends on space and time only through the first
momentsa(r ,t)5*dva(v) f (x,t), the conserved densities
where a(v)5$1,v, . . . % are the collisional invariants. In
fluid systems the timet0 is the mean free time, whereas in
DPD system, t0 is estimated from Eq. ~36! as
t0;1/(gnR0

d).
In the subsequenthydrodynamicstage,f depends only on

space and time through its dependence on the conserved
sities. In this stage, the solutionf „vua(r ,t)… of the FPB equa-
tion can be determined perturbatively,f 5 f 01m f 11•••, as
an expansion in powers of a small parameter,m; l 0¹, which
measures the variation of the macroscopic parameters ov
characteristic kinetic length scale,l 0.t0 v̄ 5(1/g)Au0 /m,
where v̄ 5Au0 /m is a typical mean velocity. Therefore th
m expansion is essentially an expansion in the small par
eter 1/g ~cf. solution to Kramers’s equation in@25#!.

In the remaining part of this section, we focus on det
mining the lowest order solutionf 0 of Eq. ~36!, which is the
local equilibrium distribution. We first observe that the le
hand side of Eq.~36! is of O(m), as] t f is proportional to
] ta;O(m), and similarly for the gradient term. The righ
hand side of Eq.~36! is of O(1). This requires that, to the
dominant order inm, f should satisfyI ( f 0)501O(m). To
determine the solutionf 0, we delocalize the collision opera
tor I ( f 0) by replacingf 0(v8,r2R,t) on the right hand side
of Eq. ~36! by f 0(v8,r ,t)1O(m). If we denote thedelocal-

FIG. 2. Two-particle distribution function. The system param
eters in the simulation were taken:N52000 particles, friction con-
stantg51, particle densityn50.2, action sphere radiusR054, and
wD(r )52(12r /R0).
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56 1683STATIC AND DYNAMIC PROPERTIES OF . . .
izedcollision operator byI 0, then f 0 is the solution of

I 0~ f 0!50 . ~38!

Guided by theH theorem, we assume the standard fo
for the local equilibrium distribution:

f 0~vua!5nS m

2pu D d/2

expF2
m~v2u!2

2u G , ~39!

wheren, u, andu are arbitrary functions ofr and t. Substi-
tution of Eq. ~39! into Eq. ~38! shows, however, that th
abovef 0 is only a solution if

u5u0[
ms2

2g
, ~40!

whereu0 is the constant model parameter introduced be
Eq. ~6!, which equals the global equilibrium temperatu
The parametersn(r ,t) andu(r ,t) in Eq. ~39! are chosen to
be the fluid density and flow velocity. Hence,

a~r ,t !5E dva~v! f ~x,t !5E dva~v! f 0~x,t ! , ~41!

wherea(v)5$1,v% is a collisional invariant.
This observation, Eq.~40!, has a profound consequenc

for the physical processes occurring in the DPD system,
makes it very different from standard fluids with energy co
servation. In fluids, there is a fast kinetic relaxation to a lo
equilibrium state specified byn(r ,t), u(r ,t), andu(r ,t), and
a subsequent slow hydrodynamic relaxation of these field
global equilibrium. The DPD system distinguishes its
from standard fluids in the sense that there is a fast relaxa
on a time scalet0 to a local equilibrium state, Eqs.~39! and
~40!, specified byn(r ,t), u(r ,t), and a spatially uniform and
constant temperatureu0. The subsequent slow relaxation in
volves only the densityn(r ,t) and flow velocityu(r ,t).

Consequently, a DPD system is not able to sustain a t
perature gradient on hydrodynamic time scales; there is
heat current proportional to a temperature gradient; and t
is no heat conductivity. Thus the DPD system describes
thermostatedor isothermal process at a fixed temperatu
u0. It may only model physical systems where the tempe
ture either relaxes very rapidly to an equilibrium value
where the temperature is irrelevant~an athermal process!.
The same conditions of rapid thermal relaxation or ather
processes apply to lattice gas automata@26#, where, in the
majority of models@27#, energy conservation is not satisfie
during collisions. There the particles may be considered
hard, impenetrable point particles, as opposed to DPD, wh
the athermal system consists of completely interpenetr
particles.

It is worthwhile to explore the differences between DP
and standard fluids somewhat further. Recalling that con
vative forces have been set equal to zero in the present
ation permits us to write the energy densitye(r ,t)
5(d/2)n(r ,t)u(r ,t) in terms of a kinetic temperature
u(r ,t). Clearly n(r ,t) is a slowly changing variable, bu
what is the behavior ofu(r ,t)?

To answer this question, it is sufficient to consider on
small deviations from global equilibrium,d f 5 f 2n0w0(v),
.

d
-
l

to
f
on

-
o
re

-
r

al

s
re
le

r-
tu-

and to linearize the FPB equation aroundn0w0(v). From that
equation we shall derive howdu(r ,t)5u(r ,t)2u0 decays to
zero. Linearization of Eq.~36! yields, after some algebra,

] td f 1v•¹d f 5v0

]

]v
•S v1

u0

m

]

]vD d f

1
mn0

2g

u0
E dRw~R!R̂R̂:u~r2R!vw0~v! ,

~42!

where we have used the relation

n0u~r ,t !5E dvd f ~x,t !v , ~43!

and introduced the coefficientv051/t0,

v05
gn0

d E dRw~R![
gn0

d
@w# . ~44!

The equation with its nonlocal integral operator on the rig
hand side of Eq.~42! would be the starting point for studyin
generalized hydrodynamics with wave-number-depend
transport coefficients. Here, however, we shall only consi
the decay of

du~r ,t !5
1

n0
E dvS mv2

d
2u0D d f . ~45!

Then the rate of change ofd f can be calculated from Eq
~42!, and yields:

] tdu1¹•
1

n0
E dvS mv2

d
2u0D vd f 522v0du . ~46!

The second term on the left hand side of Eq.~46! is typically
anO(m) correction to the dominant decay terms. So Eq.~46!
is a simple relaxation equation which shows explicitly th
the kinetic temperatureu(r ,t) decays within the kinetic stag
to the global temperatureu0 with a relaxation time

tu5(2v0)215 1
2 t0.

The conclusion is that the energy density in the hydro
namic stage, given bye(r ,t)5(d/2)u0n(r ,t), is still a slow
but not an independentvariable. It is strictly proportional to
the density. Moreover, we can conclude that the free-ene
type functions~6! and~37! represent the actualfree energyof
the DPD system in the hydrodynamic stage.

Similarly, we can determine thelocal equilibriumpart of
the pressure tensor~23! in the absence of conservativ
forces, by replacingf in PK by its local equilibrium form
f 0 and f (2) in PD by f 0f 0 according to theStosszahlansatz
@20#. To zeroth order inm, the dissipative partPD vanishes,
and the local equilibrium pressure is given by

P05E dvmVV f 05n~r ,t !u0I. ~47!

These results will be needed in the next section to solve
FPB equation to linear order inm.
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VI. HYDRODYNAMIC STAGE

A. Chapman-Enskog method

In Sec. IV we have derived the Fokker-Planck-Boltzma
equation for the DPD system and described the Chapm
Enskog method for obtaining its solutionf (vun,u) in the
hydrodynamical stage. The method requires that the ri
and left hand sides of the FPB equation~36! are expanded in
powers ofm; l 0¹, using the expansion

f ~vun,u!5 f 01m f 11•••. ~48!

Every ¹ is replaced bym¹ and the derivative] t f 0 is elimi-
nated using the macroscopic conservation laws. The low
order solution, which is the local equilibrium distribution,

f 05n~r ,t !S m

2pu0
D d/2

expF2
m

2u0
@v2u~r ,t !#2G , ~49!

has been determined in the preceding section.
To obtain f 1 we expand the FPB equation in powers

m, yielding

] f 0

]t
1mv•¹f 05I ~ f 0!1m~dI/d f ! f 0

f 11•••. ~50!

We start with the right hand side of Eq.~50!, which has been
calculated exactly toO(m) terms included. One finds afte
some algebra thatI ( f 0)5O(m2). In the preceiding section it
has only been verified thatI ( f 0)5O(m). The latter result is
not sufficient, whereas the former is sufficient for our prese
purpose. In the remaining terms on the right hand side
replace the collision operatorI by its delocalized formI 0, as
defined below Eq.~38!. The right hand side of Eq.~50! then
becomes

~dI/d f ! f 0
f 15v0

]

]V
•S V1

u0

m

]

]VD f 1 , ~51!

with v0 defined in Eq.~44!.
To calculate the left hand side of Eq.~50! to O(m) we

need the rate of change ofn and u to lowest order inm,
which may be calculated from the conservation equatio
~21! with P replaced by its local equilibrium par
P05nu0I, calculated in Eq.~47!, i.e.,

] tn52¹•~nu!,
~52!

] tu52u•¹u2
u0

r
¹n.

They yield in combination with Eq.~49!

] f 0

]t
1v•¹f 05 f 0@J:D1J¹•u#, ~53!

with

Jab~V!5
m

u0
H VaVb2

1

d
dabV2J ,

~54!
n
n-

ht

st

t
e

s

Dab~V!5
1

2H ¹aub1¹bua2
2

d
dab¹•uJ ,

and

J~V!5
mV2

du0
21 . ~55!

Note that the density and temperature gradients are abse
the right hand side of Eq.~53!, in contrast to the traditiona
Chapman-Enskog result@20#.

For convenience of notation we introduce the Fokk
Planck operatorL and its adjointL1, defined as

L5
]

]V
•S V1

u0

m

]

]VD ,
~56!

L15S 2V1
u0

m

]

]VD • ]

]V
,

to write the final equation forf 1 as

v0Lf 15 f 0@J:D1J¹•u#. ~57!

It is a second order partial differential equation~PDE! with
an inhomogeneity on the right hand side. We first constru
special solution by recalling that the Fokker-Planck opera
L can be mapped onto the Schro¨dinger equation for an iso
tropic d-dimensional harmonic oscillator@25#. Its eigenfunc-
tions are the tensor Hermite polynomials, usually called S
nine polynomials in a kinetic theory context, and th
microscopic fluxesJ andJ are among them, i.e.,

Lf 0J522 f 0J; L1J522J,
~58!

Lf 0J522 f 0J; L1J522J.

This can easily be verified. Combination of Eqs.~57! and
~58! yields the special solution

f 152
1

2v0
f 0@J:D1J¹•u# . ~59!

The general solution is obtained by adding an arbitrary lin
combination of collisional invariantsa(V)5$1,V%, which
are the solutions to the homogeneous equat
Lf 0a(V)50. However, the constraint~41! suppresses thes
terms andf 1 is the desired solution of the FPB equation
linear order inm.

B. Navier-Stokes equation

The only slow macroscopic fields are the densityn(r ,t)
and the flow velocityu(r ,t), leading to the continuity equa
tion and Navier-Stokes equation. The energy density in
hydrodynamic stage,e(r ,t)5(d/2)n(r ,t)u0, is not an inde-
pendent variable. The energy balance equation derived in
Appendix is only relevant in the kinetic stage, but has
physical significance in the hydrodynamical stage.

The results forf 0 and f 1 are sufficient to obtain the hy
drodynamic equations to Navier-Stokes order and to ob
explicit expressions for the transport coefficients. T
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O(m) correctionf 1 contains only gradients of the flow field
¹u, but no gradients of the temperature. Therefore there w
be no heat current and vanishing heat conductivity. T
O(m) terms in the pressure tensorP5P01mP11••• will
be proportional to¹u and we define the viscosities as th
coefficients of proportionality through the constitutive re
tion

P1522hD2z¹•uI, ~60!

whereh andj are, respectively, shear and bulk viscosity
Combining Eqs.~60!, ~47!, and ~21! then yields the

Navier-Stokes equation for the DPD system,

] t~ru!1¹•~ruu!52u0¹n1¹•~2hD1z¹•uI). ~61!

The explicit expressions will be obtained in the next secti

VII. TRANSPORT COEFFICIENTS

A. Kinematic viscositieshK and zK

There are two contributions to the pressure tensor:
kinetic part PK and thedissipativepart PD , defined in Eq.
~23! and two corresponding viscosities. The kinetic part d
pends only onf 5 f 01m f 1, which are given in Eqs.~49! and
~59!. ThenPK becomes

PK5nu0I1mPK,11•••, ~62!

where m is a formal expansion parameter that will be s
equal to unity at the end of the calculations and

PK,15E dvmVV f 15u0E dv$J~V!1J~V!I% f 1 . ~63!

Here the dyadicmVV has been split up into a traceless te
sor u0J and a termu0JI proportional to the unit tensor an
we have used the relation*dvf 150 @see Eq.~41!#. Inserting
the explicit solution~59! into Eq.~63! allows us to write Eq.
~62! in the form

PK,152
nu0

2v0
^JuJ&:D2

nu0

2v0
^JuJ&¹•uI, ~64!

where we have used the relationf 05nw0(V) @see Eq.~25!#
and introduced the inner product

^AuB&5E dvw0~V!A~V!B~V! . ~65!

Moreover a crossproduct of a traceless tensor and a s
vanishes, i.e,̂JuJ&50. The product̂JuJ& involves a simple
Gaussian integral and yields

^JuJ&5
2

d
. ~66!

The fourth rank tensor̂JuJ& is isotropic, traceless, and sym
metric, which implies the general form
ll
e

.

e

-

t

-

lar

^JabuJdg&5S m

u0
D 2E dvw0~V!S VaVb2

1

d
dabV2DVgVd

5CFdagdbd1daddbg2
2

d
dabdgdG . ~67!

By taking double contractions and evaluating Gaussian in
grals the constantC comes out to be equal to 1 and the (
product in Eq.~64! yields

^JuJ&:D52D. ~68!

Combination of Eqs.~64!, ~66!, and~68! finally yields

PK,152
nu0

v0
D2

nu0

dv0
¹•uI. ~69!

Comparison with the constitutive relation~60! enables us to
identify the coefficients as thekinetic partsof the viscosities,

hK5
nu0

2v0
5

du0

2@w#g
, zK5

nu0

dv0
5

u0

g@w#
, ~70!

where the definition~44! of v0 has been used. We note th
the kinetic part is inversely proportional tog and has been
explicitly calculated.

B. Dissipative viscositieshD and zD

This section deals with the dissipative partP of the pres-
sure tensor in Eq.~23!, which depends on the pair distribu
tion function f (2). This function has a local equilibrium par
f 0

(2) and a partm f 1
(2) , linear in the gradients. We start wit

the first part.
In order to make a direct comparison with the work

Español @12# we retain the conservative forces, for the tim
being. Then, the local equilibrium pair function has the fo

f 0
~2!~x,x8!5 f 0~x! f 0~x8!g0~ ux2x8u!, ~71!

whereg0(R) is the spatial correlation function in local equ
librium. Only at the end of the calculation we will set th
conservative forces equal to zero, so thatg0(R)51.

Substitution of Eq.~71! into Eq. ~23! yields then

PD52
1

2
gmE dRg0~R!w~R!R̂R̂$R•@u~r !2u~r2R!#%

3n~r !n~r2R!

.2
1

2
gmn2E dRR2g0~R!w~R!R̂R̂R̂R̂:¹u, ~72!

where@•••# has been expanded to linear order in the gra
ents. Calculation of the completely symmetric isotrop
fourth rank tensor proceeds as in Eq.~67! with the result

E dRR2g0~R!w~R!R̂aR̂bR̂gR̂d

5
@R2wg0#

d~d12!
@dabdgd1daddbg1dagdbd# ,

~73!
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where

@R2wg0#[E dRR2g0~R!w~R! . ~74!

We note that the definition ofPD in Eq. ~23! contains f̄ (2)

rather thanf (2)(v,r ,v8,r2R,t). One easily verifies that the
spatial averaging, denoted by the overline, makes no dif
ence to linear order in the gradients. The final result for
dissipative part then becomes

PD52
mgn2@R2wg0#

d~d12!
D2

mgn2@R2wg0#

2d2 ¹•uI. ~75!

With the help of Eq.~60! the coefficients can be identified a
the contributions to the viscosities due to the dissipat
forces, i.e.,

hD5
mgn2@R2wg0#

2d~d12!
, zD5

mgn2@R2wg0#

2d2 . ~76!

The local equilibrium contribution~75! to the dissipative
pressure tensor turns out to be the dominant contributio
the viscosity of a DPD fluid, for large values ofng, as illus-
trated in Figure 3 and confirmed by numerical simulation
@4,13#. We also want to point out that anO(m) contribution
to the pressure tensor, calculated in local equilibrium as
Eq. ~72!, is not a novelty of this paper, but also occurs in
systems with impulsive~hard core! interactions that arenot
strictly local. For instance, consider the collisional trans
contribution analogous toPC for elastic hard spheres, wher
F52¹f in Eq. ~23! is ill defined. This term is calculated in
Secs. 16.4 and 16.5 of@20#, where its local equilibrium con-

tribution yieldshHS5 3
5 zHS5 3

5 Ã with Ã;n2, defined in Eq.
~16.5.7! of @20#. These contributions in real fluids are th
direct counterparts ofhD5 3

5zD;n2 in DPD.

FIG. 3. Kinematic viscosityn5h/r against densityn for
dt50.05 anddt50.15 in dimensionless units. The system para
eters in the simulations were taken: friction constantg51 and ran-
dom force strengths51.5 for densitiesn50.025, 0.1, 0.3, and
0.4. Lines indicate present theory and results as obtained
Hoogerbrugge and Koelman, and@13#, @11# under the continuum
approximation.
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e

e

to
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We return to the DPD systemwithoutconservative forces
where the Gibbs distribution~15! reduces to) i 51

N w0(v i),
and where the spatial correlations are absent,
g0(R)51. This equality is also required here for consisten
with the molecular chaos approximation~31!, used in Sec. V
and subsequent ones.

So far, we have only considered local equilibrium cont
butions toPD in Eq. ~72!. To obtain the complete contribu
tion, consistent with the molecular chaos assumption,
substitute Eq.~31! into Eq. ~23! and use the definitions~19!.
Surprisingly, the results~72! are recovered, showing tha
Eqs. ~72!–~76! give the full contribution of PD to the
Navier-Stokes equation, at least within the molecular ch
assumption.

To facilitate the comparison with the original prediction
of @4,13,11#, we setg051 in Eq. ~75! and introduce

^R2&w5@R2w#/@w#, ~77!

where@a# denotes the spatial average introduced in Eq.~44!,
so that^R2&w;R0

2.
The final result for the dissipative part of the viscosities

then

hD5
gmn2^R2&w@w#

2d~d12!
5v0tw

2 nu0/2~d12!,
~78!

zD5
gmn2^R2&w@w#

2d2 5v0tw
2 nu0/2d,

where v051/t05gn@w#/d is the characteristic relaxatio
rate introduced in Eq.~44!, and tw , defined through
tw
2 5^R2&w v̄ 2, is the average traversal time of an actio

sphere withv̄ 5(u0 /m)1/2 the thermal velocity. These result
are in fact the theoretical predictions for thetotal shear and
bulk viscosity of the DPD fluid, as obtained in@13,11# on the
basis of the ‘‘continuum approximation’’ to the equations
motion of the DPD particles. In the present context of no
equilibrium statistical mechanics and kinetic theory, the
contributions have been identified as the local equilibriu
contributions to the transport coefficients in order to ma
the connection with Hoogerbrugge and Koelman’s expr
sion for the kinematic viscosity:

n5h/r5
v^R2&w

2d~d12!dt
, ~79!

with their friction constantv5gdt, proportional todt, as a
proper friction should be. Moreover, we recall that the ran
function w(R) in @4# is normalized as

n@w#5nE dRw~R!51. ~80!

So, the results~78! and~79! are identical. Hoogerbrugge an
Koelman have also shown that the viscosity found in th
numerical simulations approaches Eqs.~78! and ~79! for
large ng. Simulations carried out with the modified DP
algorithm show the same properties@13#.

-
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We conclude this subsection by listing the full results~70!
and~78! for the shear and bulk viscosity in a DPD fluid wit
continuous time (dt→0):

h5hD1hK5
1

2
nu0H v0tw

2

d12
1

1

v0
J ,

~81!

z5zD1zK5
1

d
nu0H v0tw

2

2
1

1

v0
J .

They involve the two intrinsic time scales of the DPD flui
the characteristic kinetic timet051/v0 @see Eq.~44!# and the
traversal timetw of an action sphere, as defined below E
~78!, which is of orderR0 / v̄ .

In the parameter rangetw.t0 the estimateshD andzD of
@13,11# dominate, and in the rangetw,t0 the kinematic vis-
cosities do, as illustrated in Fig. 3.

C. Numerical simulations

As a simple test, the shear viscosityh of the DPD system
was measured in two dimensions using a physical metho
linear velocity gradient was established between two mov
plates and the force required to maintain this system
measured once equilibrium had been attained.

By means of these simulations, we have measured
viscosity of the DPD fluid as a function ofng at different
temperaturesu05ms2/2g. Results are shown in Fig. 3 for
higher temperature to emphasize the importance of the k
matic contribution. At largeng the measured viscosity ap
proaches the theoretical prediction when the time stepdt is
reduced. In this range of parameters, the viscosity is do
nated by its dissipative part~78!, corresponding to the origi
nal estimates of Hoogerbrugge and Koelman. At smallng
and high temperatureu0 the viscosity is dominated by th
kinetic contribution.

At small ng there are sizable differences between p
dicted and simulated results, which do not decrease with
creasing time step size. The breakdown of the theory in
range of parameters could be explained by several facto

~1! First, inspection of the collision term on the right han
side of Eq.~36! or Eq. ~51! shows that withv0;ng and
v0u0;s2 small the typical size of the collision term;1/t0
may not be large compared to the propagation terms on
right hand side of Eq.~36!. Consequently, the Chapman
Enskog expansion will be poorly convergent or even div
gent, because the kinetic and hydrodynamic time regimes
no longer well separated, or, equivalently, because
change of the macroscopic flow velocity over the charac
istic kinetic length scale becomes large. To be consis
with the physical requirement of well separated time sca
in this range of parameters, the imposed velocity gradie
would have to be reduced.

~2! The system size for the simulations carried out may
too small. In order to avoid finite-size effects such as wa
vector-dependent viscosities, the system must be sig
cantly larger than the interaction rangeR0 of the particles.

~3! The molecular chaos approximation~31! could break
down as a result of thesmallnet momentum transfer in DPD
collisions. This may cause the development of dynamic c
relations such as correlated binary~‘‘ring’’ ! collisions.
.
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D. Self-diffusion coefficientD

The coefficient of self-diffusion can be obtained by co
sidering a DPD fluid that is in equilibrium, except for th
probability distribution f s of a tagged particle, labeled a
i 51. Following the arguments of Sec. V and choosing
m-space densityf̂ s(x)5d(x2x1), instead of Eq.~32!, one
arrives at an equation similar to Eq.~35!, with f and f (2)

replaced byf s and f s
(2) , respectively, defined as

f s~x,t !5^d~x2x1!&,
~82!

f s
~2!~x,x8,t !5K (

j Þ1
d~x2x1!d~x2xj !L .

The molecular chaos assumption~31! now takes the form

f s
~2!~x,x8,t !5nw0~v8! f s~x,t !, ~83!

as the fluid particles are in thermal equilibrium with th
Maxwellianw0(v) defined in Eq.~25!, and the resulting FPB
equation is linear, i.e.,

] t f s1v•¹f s5v0

]

]v
•S v1

u0

m

]

]vD f s . ~84!

It is identical to the Kramers equation~1! with F(r )50.
The continuity equation takes the form

] tc~r ,t !1¹• j ~r ,t !50, ~85!

with tagged particle density and current defined as

c~r ,t !5E dvf s~x,t !,
~86!

j ~v,t !5E dvvf s~x,t !.

Application of the Chapman-Enskog method to Eq.~84!
yields the ‘‘local equilibrium’’ distribution function
f s05c(r ,t)w0(v) and following equation forf s1[ f s2 f s0,

w0~v !v•¹c5v0

]

]v
•S v1

u0

m

]

]vD f s1[v0Lf s1 . ~87!

As vf0 on the left hand side is again an eigenfunction
L with eigenvalue21, we find

f s152
1

v0
f0~v !v•¹c. ~88!

The coefficient ofself-diffusion D, defined through the con
stitutive equation

j5E dvvf 152D¹c, ~89!

becomes for the DPD fluid

D5
u0

v0m
5

du0

rg@w#
, ~90!
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where r5mn is the mass density of the fluid. The abo
result is new. There is only a kinetic contribution and
dissipative one.

VIII. CONCLUSIONS AND PROSPECTS

The main results of this paper are the derivation and
lution of the Fokker-Planck-Boltzmann equation for the DP
fluid, providing explicit results for the thermodynamic an
transport properties in terms of the system parameters:
sity n, friction constantg, temperatureu05ms2/2g, and
range functionw(R) with rangeR0. There are two intrinsic
time scales: the kinetic relaxation timet0;1/ngR0

d deter-
mined by the collision term, and the traversal tim
tw;R0 / v̄ of an action sphere, wherev̄ 5Au0 /m is the av-
erage velocity. We highlight the most important results a
future prospects in a number of comments.

~1! The DPD fluid for continuous time~step size
dt→0), described by theN-particle Fokker-Planck equatio
of Español and Warren, obeys anH theorem for the free
energyF. The indispensable role of the detailed balance c
dition in establishing such a theorem is demonstrated
guarantees a monotonic approach ofF towards a unique
thermal equilibrium, described by the Gibbs distribution w
a temperatureu05ms2/2g.

~2! The local conservation laws for mass densityr5nm
and momentum density are the essential prerequisites fo
validity of the Navier-Stokes equations. The temperatu
however, plays a very peculiar role. On the one hand
detailed balance condition guarantees the existence of a w
defined thermal equilibrium with a global equilibriumu0, in
which energy is conserved on average. On the other h
the local equilibrium state depends only onn(r ,t) and
u(r ,t), but not on a local equilibrium temperatureu(r ,t),
which relaxes in a timet0 ~kinetic stage! towards its uniform
equilibrium valueu0. In the subsequent hydrodynamic sta
the DPD fluid is not able to sustain a temperature gradi
there is no heat conduction, and all processes occur iso
mally.

~3! In the coarse-grained mesoscopic interpretation
DPD particles as ‘‘lumps of fluids,’’ the microscopic conse
vative forces between the DPD particles are small compa
to the mesoscopic friction and random noise~largeg limit !,
and have been neglected in deriving the FPB equation
sufficiently low temperature conservative forces can have
effect of forcing the DPD particles into crystalline config
rations.

~4! The FPB equation is derived from the first equation
the BBGKY hierarchy for the distribution functions, ob
tained from theN-particle Fokker-Planck equation, playin
the role of the Liouville equation. In addition, the molecul
chaos assumptionf (2)(x,x8)5 f (x) f (x8) has been used.

~5! The Chapman-Enskog solution to the continuous ti
FPB equation yields two types of contributions to the v
cosities.~i! DissipativepartshD andzD , accounting for the
collisional transfer through the nonlocal dissipative inter
tions. They are determined by the local equilibrium distrib
tion. ~ii ! Kinetic partshK andzK , coming from the collision
operator and determined by the Chapman-Enskog solutio
the FPB equation. Iftw.t0 the dissipative viscosities ar
dominant; if tw,t0 the kinetic viscosities are dominant. I
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@13,11# the total viscosity is estimated byhD andzD , which
is correct fortw@t0. The simulated results for the kinemat
viscosity are in reasonably good agreement with the pre
tions within the assessed theoretical regions of validity of
theory. We also calculated the coefficient of self-diffusio
which only has a kinetic part.

~6! It is also of interest to consider the Green-Kubo fo
mulas for the viscosities in a DPD fluid as derived in@12#,
where the linearg dependence of the viscosity in the limit o
large dissipationg is questioned. To make the connectio
we observe thathD and hC of @12# should be identified,
respectively, withhD andhK of the present paper. The tim
correlation functions of@12# for hD and hC are formally
proportional tog2 and 1, respectively. Both time integra
appearing in the Green-Kubo formulas extend over the ch
acteristic kinetic time to;1/g. Consequently,hD;g and
hC;1/g in the limit of largeg, in complete agreement with
the detailed calculation of the present paper.

~7! The validity of the kinetic transport coefficientshK

andzK and the convergence of the Chapman-Enskog exp
sion require that spatial variations (m; l 0¹) are small over a
characteristic kinetic length scalel 0; v̄ t0; v̄ /ngR0

d . The
convergence of the gradient expansion in Eq.~72! and the
validity of the dissipative viscositieshD and zD require in
addition that spatial variations are small over the diamete
an action sphere,R0; v̄ tw . Both criteria pose bounds on th
shear rates, imposed in the simulations, as well as on
validity of the Chapman-Enskog expansion.

~8! An interesting extension of the present theory wou
be towards generalized hydrodynamics. Such a region ex
if tw@t0 or R0@ l 0. Then, the hydrodynamic modes wit
wave numbers k in the range (2p/R0 ,2p/ l 0) have
k-dependent dissipative viscositieshD andzD . They may be
calculated by studying the eigenmodes of the linearized F
equation~42!. A similar wave vector range to generalize
hydrodynamics occurs in dense hard sphere fluids, wherl 0

is small compared to the hard sphere diameterR0. Such theo-
ries have been used successfully to describe neutron sca
ing experiments on liquid argon and liquid sodium@28#.
Generalized hydrodynamics in DPD might therefore be
interest in explaining light and neutron experiments on c
centrated colloidal suspensions.

~9! The equilibrium properties~see Fig. 2 and@14#! and
transport coefficients of DPD~see @16,18#! depend sensi-
tively on the step sizedt. The Fokker-Planck equation~4!,
the detailed balance condition~16!, the FPB equation~36!,
the hydrodynamic equations~61! and corresponding trans
port coeffcients in Secs. VII A, VII B, and VII C only hold
for the continuous time model (dt→0). The only analytic
study, available on DPD at finitedt @14#, calculates the equi-
librium temperatureu(dt), and derives criteria, imposed o
dt, for the stability of the equilibrium distributionf 0(x).

The most important open problem on DPD is a system
analysis of alldt corrections to equilibrium and transpo
properties, such as an explanation of Figs. 2 and 3, sugg
ing that the current form of the modified DPD algorithm f
finite step sizedt does not obey the detailed balance con
tions, which implies that its stationary state is not the therm
equilibrium state described by the Gibbs distribution.
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APPENDIX: DETAILS OF THE MACROSCOPIC
FLOW EQUATIONS

1. Momentum conservation equation

InsertingA5( imvid(r2r i) in Eq. ~18! yields directly

] t~ru!52¹•K (
i

mvivid~r2r i !L 1K (
i

Fid~r2r i !L
2mgK (

i , j Þ i
w~Ri j !~R̂i j .vi j !R̂i j d~r2r i !L . ~A1!

The first term on the right hand side, which will be calle
rhs1, is transformed to the local rest frame of the fluid
introducing peculiar velocitiesV i5vi2u(r i ,t) and yields

rhs152¹•~ruu1PK!, ~A2!

where

PK5K (
i

mV iV id~r2r i !L ~A3!

is the kinetic part of the pressure tensor, as listed in Eq.~23!.
The second term on the right hand side of Eq.~A1!, which
will be called rhs2, involves the conservative interpartic
forces Fi5( j Þ iF(Ri j ). Symmetrizing overi and j yields
then

rhs25K 1

2 (
i , j Þ i

F~Ri j !@d~r2r i !2d~r2r j !#L
52¹•K 1

2 (
i , j Þ i

F~Ri j !Ri j E
0

1

dld~r2r i1lRi j !L
[2¹•PC . ~A4!

Here we have used the identity

d~r2r i !2d~r2r j !52E
0

1

dl
d

dl
d~r2r i1lRi j !

52¹•Ri j E
0

1

dld~r2r i1lRi j !.

~A5!

The third term on the right hand side of Eq.~A1!, referred to
as rhs3, is due to dissipative particle interactions and ca
e

e

n
s

y

be

treated in a similar fashion. Symmetrizing overi and j , and
replacingd(r2r i) by (1/2)@d(r2r i)2d(r2r j )#, we obtain

rhs35¹•K m

2 (
i , j Þ i

gw~Ri j !Ri j R̂i j ~R̂i j •vi j !

3E
0

1

dld~r2r i1lRi j !L
[2¹•PD . ~A6!

The results~A4! and~A6! are of the same general form, an
can be expressed using the pair distribution function~20! as

K (
i , j Þ i

A~Ri j ,vi ,vj !d~r2r i1lRi j !L
5E dvE dv8E dRA~R,v,v8!

3 f ~2!
„v,r1lR,v8,r1~l21!R,t…, ~A7!

where Eqs.~A4!, ~A6!, and~A7! yield, respectively,PC and
PD as listed in Eq.~23! with f̄ (2) defined in Eq.~24!. Com-
bination of Eqs.~A1!, ~A2!, ~A4!, and ~A6! gives the mac-
roscopic equation for the momentum density,

] t~ru!1¹•$ruu1PK1PC1PD%50, ~A8!

as listed in Eqs.~21! and ~22! in the body of the paper.

2. Energy balance equation

We start with the kinetic energy densityeK by setting
A5( i(1/2)mvi

2d(r2r i) in Eq. ~18!. This yields, after some
algebra,

] teK52¹•K (
i

1

2
mvi

2d~r2r i !L
1K (

i , j Þ i
vi•F~Ri j !d~r2r i !L

2mgK (
i , j Þ i

w~Ri j !~R̂i j •vi j !~R̂i j •vi !d~r2r i !L
1gu0K (

i , j Þ i
w~Ri j !d~r2r i !L . ~A9!

By settingA5 1
2 ( i , j Þ if(Ri j )d(r2r i) we find similarly for

the potential energy density,

] tef 52¹•
1

2K (
i , j Þ i

vif~Ri j !d~r2r i !L
2

1

2K (
i , j Þ i

vi j •F~Ri j !d~r2r i !L . ~A10!

We sum Eqs.~A9! and~A10! to obtain the rate of change o
the total energy density:
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e5eK1ef 5K (
i

e i~v!d~r2r i !L , ~A11!

wheree i(v) is the microscopic energy per particle:

e i~v!5
1

2
mvi

21
1

2(j Þ i
f~Ri j !. ~A12!

We denote thenth term on the right hand sides of Eq
~A9! and ~A10! by ~an! and ~bn!, respectively, and get th
following results:

~a1!1~b1!52¹•K (
i

vie i~v!d~r2r i !L [2¹•qK ,

~a2!1~b2!5
1

2K (i
~vi1vj !•F~Ri j !d~r2r i !L

52¹•K 1

4 (
i , j Þ i

Ri j F~Ri j !•~vi1vj !

3E
0

1

dld~r2r i1lRi j !L 52¹•qC .

~A13!

The expression for@(a2)1(b2!# has been symmetrized ove
i and j and Eq.~A5! has been used. The term (a4) repre-
sents the energy sourceGR caused by the random forces.
(a3) we splitvi into (1/2)vi j 1(1/2)(vi1vj ). The first term
,

ett

ett

J

y

J

r,

r’
hn
o.
containingvi j gives the energy sinkGD resulting from the
damping forces. The second term containingvi j is again
symmetrized and combined with Eq.~A5! to give the dissi-
pative part of the energy current2¹•qD . Combination of
these terms then gives

~a4!1~a3!5gK (
i , j Þ i

w~Ri j !d~r2r i !L
2

1

2
mgK (

i , j Þ i
w~Ri j !~R̂i j •vi j !

2d~r2r i !L
1¹•K 1

4 (
i , j Þ i

Ri j w~Ri j !~R̂i j •vi j !R̂i j •~vi1vj !

3E
0

1

dld~r2r i1lRi j !L
1gK (

i , j Þ i
w~Ri j !d~r2r i !L

[GR2GD2¹•qD , ~A14!

whereGR , GD , andqD are defined by the three precedin
terms, respectively.

To obtain the full energy balance equation we sum E
~A11! –~A14! to obtain

] te52¹•@qK1qC1qD#1GR2GD[2¹•q1G.
~A15!
u.
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