fix qeq/reax command

fix qeq/reax/kk command

fix qeq/reax/omp command

Syntax

fix ID group-ID qeq/reax Nevery cutlo cuthi tolerance params args
  • ID, group-ID are documented in fix command
  • qeq/reax = style name of this fix command
  • Nevery = perform QEq every this many steps
  • cutlo,cuthi = lo and hi cutoff for Taper radius
  • tolerance = precision to which charges will be equilibrated
  • params = reax/c or a filename
  • args = dual (optional)

Examples

fix 1 all qeq/reax 1 0.0 10.0 1.0e-6 reax/c
fix 1 all qeq/reax 1 0.0 10.0 1.0e-6 param.qeq

Description

Perform the charge equilibration (QEq) method as described in (Rappe and Goddard) and formulated in (Nakano). It is typically used in conjunction with the ReaxFF force field model as implemented in the pair_style reax/c command, but it can be used with any potential in LAMMPS, so long as it defines and uses charges on each atom. The fix qeq/comb command should be used to perform charge equilibration with the COMB potential. For more technical details about the charge equilibration performed by fix qeq/reax, see the (Aktulga) paper.

The QEq method minimizes the electrostatic energy of the system by adjusting the partial charge on individual atoms based on interactions with their neighbors. It requires some parameters for each atom type. If the params setting above is the word “reax/c”, then these are extracted from the pair_style reax/c command and the ReaxFF force field file it reads in. If a file name is specified for params, then the parameters are taken from the specified file and the file must contain one line for each atom type. The latter form must be used when performing QeQ with a non-ReaxFF potential. Each line should be formatted as follows:

itype chi eta gamma

where itype is the atom type from 1 to Ntypes, chi denotes the electronegativity in eV, eta denotes the self-Coulomb potential in eV, and gamma denotes the valence orbital exponent. Note that these 3 quantities are also in the ReaxFF potential file, except that eta is defined here as twice the eta value in the ReaxFF file. Note that unlike the rest of LAMMPS, the units of this fix are hard-coded to be A, eV, and electronic charge.

The optional dual keyword allows to perform the optimization of the S and T matrices in parallel. This is only supported for the qeq/reax/omp style. Otherwise they are processed separately.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. No global scalar or vector or per-atom quantities are stored by this fix for access by various output commands. No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is invoked during energy minimization.


Styles with a gpu, intel, kk, omp, or opt suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in Section 5 of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues.

These accelerated styles are part of the GPU, USER-INTEL, KOKKOS, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input script.

See Section 5 of the manual for more instructions on how to use the accelerated styles effectively.


Restrictions

This fix is part of the USER-REAXC package. It is only enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

This fix does not correctly handle interactions involving multiple periodic images of the same atom. Hence, it should not be used for periodic cell dimensions less than 10 angstroms.