**Can dispersion corrections annihilate the dispersion-driven nano-
aggregation of non-polar groups? An ab initio molecular dynamics study
of ionic liquid systems**

DS Firaha and M Thomas and O Holloczki and M Korth and B Kirchner, JOURNAL OF CHEMICAL PHYSICS, 145, 204502 (2016).

DOI: 10.1063/1.4967861

In this study, we aim at understanding the influence of dispersion correction on the ab initio molecular dynamics simulations of ionic liquid (IL) systems. We investigated a large bulk system of the 1-butyl-3-methylimidazolium triflate IL and a small cluster system of ethylamine in ethylammonium nitrate both under periodic boundary conditions. The large system displays several changes upon neglect of dispersion correction, the most striking one is the surprising decrease of the well-known microheterogeneity which is accompanied by an increase of side chain hydrogen atom-anion interplay. For the diffusion coefficient, we observe a correction towards experimental behavior in terms of the cation becoming faster than the anion with dispersion correction. Changes in the electronic structure upon dispersion correction are reflected in larger/smaller dipole moments for anions/cations also seen in the calculated IR spectrum. The energetics of different ion pair dimer subsystems (polar and non-polar) are in accordance with the analysis of the trajectories: A detailed balance in the ionic liquid system determines its particular behavior. While the overall interaction terms for dispersion-corrected calculations are higher, the decrease in microheterogeneity upon inclusion of dispersion interaction becomes obvious due to the relation between all contributions to polar-polar terms. For the small system, we clearly observe the well known behavior that the hybrid functionals show higher reaction barriers than the pure generalized gradient approximation (GGA) functionals. The correction of dispersion reduces the discrepancies in some cases. Accounting for the number of jumps, we observe that dispersion correction reduces the discrepancies from 50% to less than 10%. Published by AIP Publishing.

Return to Publications page