The dynamics of copper intercalated molybdenum ditelluride

N Onofrio and D Guzman and A Strachan, JOURNAL OF CHEMICAL PHYSICS, 145, 194702 (2016).

DOI: 10.1063/1.4967808

Layered transition metal dichalcogenides are emerging as key materials in nanoelectronics and energy applications. Predictive models to understand their growth, thermomechanical properties, and interaction with metals are needed in order to accelerate their incorporation into commercial products. Interatomic potentials enable large-scale atomistic simulations connecting first principle methods and devices. We present a ReaxFF reactive force field to describe molybdenum ditelluride and its interactions with copper. We optimized the force field parameters to describe the energetics, atomic charges, and mechanical properties of (i) layered MoTe2, Mo, and Cu in various phases, (ii) the intercalation of Cu atoms and small clusters within the van derWaals gap of MoTe2, and (iii) bond dissociation curves. The training set consists of an extensive set of first principles calculations computed using density functional theory (DFT). We validate the force field via the prediction of the adhesion of a single layer MoTe2 on a Cu(111) surface and find good agreement with DFT results not used in the training set. We characterized the mobility of the Cu ions intercalated into MoTe2 under the presence of an external electric field via finite temperature molecular dynamics simulations. The results show a significant increase in drift velocity for electric fields of approximately 0.4 V/angstrom and that mobility increases with Cu ion concentration. Published by AIP Publishing.

Return to Publications page