Effective interactions between nanoparticles: Creating temperature- independent solvation environments for self-assembly

HOS Yadav and G Shrivastav and M Agarwal and C Chakravarty, JOURNAL OF CHEMICAL PHYSICS, 144, 244901 (2016).

DOI: 10.1063/1.4954325

The extent to which solvent-mediated effective interactions between nanoparticles can be predicted based on structure and associated thermodynamic estimators for bulk solvents and for solvation of single and pairs of nanoparticles is studied here. As a test of the approach, we analyse the strategy for creating temperature-independent solvent environments using a series of homologous chain fluids as solvents, as suggested by an experimental paper M. I. Bodnarchuk et al., J. Am. Chem. Soc. 132, 11967 (2010). Our conclusions are based on molecular dynamics simulations of Au-140(SC10H21)(62) nanoparticles in n-alkane solvents, specifically hexane, octane, decane and dodecane, using the TraPPE-UA potential to model the alkanes and alkylthiols. The 140-atom gold core of the nanocrystal is held rigid in a truncated octahedral geometry and the gold-thiolate interaction is modeled using a Morse potential. The experimental observation was that the structural and rheological properties of n-alkane solvents are constant over a temperature range determined by equivalent solvent vapour pressures. We show that this is a consequence of the fact that long chain alkane liquids behave to a good approximation as simple liquids formed by packing of monomeric methyl/methylene units. Over the corresponding temperature range (233-361 K), the solvation environment is approximately constant at the single and pair nanoparticle levels under good solvent conditions. However, quantitative variations of the order of 10%-20% do exist in various quantities, such as molar volume of solute at infinite dilution, entropy of solvation, and onset distance for soft repulsions. In the opposite limit of a poor solvent, represented by vacuum in this study, the effective interactions between nanoparticles are no longer temperature-independent with attractive interactions increasing by up to 50% on decreasing the temperature from 361 K to 290 K, accompanied by an increase in emergent anisotropy due to correlation of mass dipoles on the two nanoparticles. One expects therefore that during self-assembly using solvent evaporation, temperature can be used as a structure-directing factor as long as good solvent conditions are maintained. It also suggests that disordered configurations may emerge as solvent quality decreases due to increasing role of short-range attractions and ligand fluctuation-driven anisotropy. The possibilities of using structural estimators of various thermodynamic quantities to analyse the interplay of ligand fluctuations and solvent quality in self-assembly as well as to design solvation environments are discussed. Published by AIP Publishing.

Return to Publications page