**Bending response of single layer MoS2**

S Xiong and GX Cao, NANOTECHNOLOGY, 27, 105701 (2016).

DOI: 10.1088/0957-4484/27/10/105701

Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. <4 nm) cannot give the correct bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond- order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.

Return to Publications page