Effect of Ultrahigh Stiffness of Defective Graphene from Atomistic Point of View

DG Kvashnin and PB Sorokin, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 6, 2384-2387 (2015).

DOI: 10.1021/acs.jpclett.5b00740

Well-known effects of mechanical stiffness degradation under the influence of point defects in macroscopic solids can be controversially reversed in the case of low-dimensional materials. Using atomistic simulation, we showed here that a single-layered graphene film can be sufficiently stiffened by monovacancy defects at a tiny concentration. Our results correspond well with recent experimental data and suggest that the effect of mechanical stiffness augmentation is mainly originated from specific bonds distribution in the surrounded monovacancy defects regions. We showed that such unusual mechanical response is the feature of presence of specifically monovacancies, whereas other types of point defects such as divacancy, 555-777 and Stone Wales defects, lead to the ordinary degradation of the graphene mechanical stiffness.

Return to Publications page