Nanoscale fluid transport: Size and rate effects

X Chen and GX Cao and AJ Han and VK Punyamurtula and L Liu and PJ Culligan and T Kim and Y Qiao, NANO LETTERS, 8, 2988-2992 (2008).

DOI: 10.1021/nl802046b

The transport behavior of water molecules inside a model carbon nanotube is investigated by using nonequilibrium molecular dynamcis (NMED) simulations. The shearing stress between the nanotube wall and the water molecules is identified as a key factor in determining the nanofluidic properties. Due to the effect of nanoscale confinement, the effective shearing stress is not only size sensitive but also strongly dependent on the fluid flow rate. Consequently, the nominal viscosity of the confined water decreases rapidly as the tube radius is reduced or when a faster flow rate is maintained. An infiltration experiment on a nanoporous carbon is performed to qualitatively validate these findings.

Return to Publications page