The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride

YF Gao and XL Zhang and YH Jing and M Hu, NANOSCALE, 7, 7143-7150 (2015).

DOI: 10.1039/c4nr07359b

Hexagonal boron nitride (BN) and its bilayer form are very fascinating two-dimensional materials that have attracted tremendous interest recently. Their realistic applications in emerging nanoelectronics usually quest for manipulating the thermal transport properties in a precise manner. Using nonequilibrium molecular dynamics simulations, we herein studied the effect of inter-layer covalent bonding on the thermal conductivity of bilayered BN. We found that the in-plane thermal conductivity of bilayered BN, which can be largely tuned by introducing covalent bonding between the two BN layers, depends not only on the inter-layer bonding density, but also on the detailed topological configuration of the inter-layer bonds. For randomly distributed inter- layer bonding the thermal conductivity of bilayered BN decreases monotonically with inter-layer bonding density, the same behavior already found for bilayered graphene. However, for regularly arranged inter-layer bonding the thermal conductivity of bilayered BN surprisingly possesses a non-monotonic dependence on the inter-layer bonding density. This non-intuitive non-monotonic dependence is further explained by performing spectral energy density analysis, where the peak and valley values of the thermal conductivity are governed by different mechanisms. These results suggest the application of inter-layer covalent bonding in designing nanoscale devices with precisely tunable thermal conductivities.

Return to Publications page