ANR Chowdhury and CM Wang and SJA Koh, INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 6, 1450006 (2014).

DOI: 10.1142/S1758825114500069

Molecular dynamics (MD) simulations are performed using adaptive intermolecular reactive bond order potential to analyze single-walled and double-walled carbon nanotubes. These carbon nanotubes were analyzed for buckling under compression and under torsion. The MD simulations create a comprehensive database for the critical buckling loads/strains and critical buckling torques/twist angles for armchair SWCNTs and DWCNTs of varying diameters and lengths. Using MD results as a computational benchmark, an equivalent thick shell model of CNT is proposed, which is amenable for analysis using a commercially available software ABAQUS. Based on our MD results, an empirical equation that describes the size-dependent Young's modulus for a single-walled carbon nanotube is established. Buckling analysis of CNT under compression and under torsion are performed with the equivalent shell model using size- dependent Young's modulus, Poisson's ratio = 0.19 and shell thickness h = 0.066 nm. We show that the equivalent shell model gives good estimate of critical buckling load/strain and critical buckling torque with respect to the MD results. Variation of critical twist angle with length of CNT, predicted by the shell model is in good qualitative agreement with MD simulation. However, the equivalent shell model underestimates the critical twist angle by 30% because the continuum shell model overestimates torsional stiffness of CNT compared to an atomistic model of CNT. The equivalent shell model is less computational intensive to implement as compared with MD. Its accuracy for predicting the buckling states for long carbon nanotubes allows it to be used for moderately long CNTs under compression/torsion, in-lieu of MD simulations.

Return to Publications page