Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations

YJ Wang and GJJ Gao and S Ogata, PHYSICAL REVIEW B, 88, 115413 (2013).

DOI: 10.1103/PhysRevB.88.115413

Understanding the grain size effect on diffusion in nanocrystals has been hampered by the difficulty of measuring diffusion directly in experiments. Here large-scale atomistic modeling is applied to understand the diffusion kinetics in nanocrystals. Enhanced short- circuit diffusivity is revealed to be controlled by the rule of mixtures for grain-boundary diffusion and lattice diffusion, which can be accurately described by the Maxwell-Garnett equation instead of the commonly thought Hart equation, and the thermodynamics of pure grain- boundary self-diffusion is not remarkably affected by varying grain size. Experimentally comparable Arrhenius parameters with atomic detail validate our results. We also propose a free-volume diffusion mechanism considering negative activation entropy and small activation volume. These help provide a fundamental understanding of how the activation parameters depend on size and the structure-property relationship of nanostructured materials from a physical viewpoint.

Return to Publications page