Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers

ZW Cui and LC Brinson, PHYSICAL REVIEW E, 88, 022602 (2013).

DOI: 10.1103/PhysRevE.88.022602

In this paper, we investigate the enhancement mechanism of the mechanical properties for hard-soft block copolymers by using molecular dynamics simulations at various temperatures. A coarse-grained approach is adopted to study sufficiently generic models. Our numerical experiments demonstrate that the nonbond potential plays a more significant role in mechanical properties compared to the bond potential. This finding serves as a cornerstone to understand the hard- soft materials. To explore the effect of hard segments, four copolymers with different concentrations and energy factors that describe the interaction between hard beads are conducted. Simulation results show that the mechanical performances of the system with large attractive force and small concentration of hard segments could be improved dramatically in conjunction with a moderate increment of the glass transition temperature. In particular, the energy factor shows a substantial influence in determining the microphase separation as well as the morphology of hard domains. These observations are believed to provide design guidelines for polymeric materials in engineering practice.

Return to Publications page