Self-assembly of carbon nanotubes and boron nitride nanotubes into coaxial structures

YD Kuang and SQ Shi and PKL Chan and CY Chen, COMPUTATIONAL MATERIALS SCIENCE, 50, 645-650 (2010).

DOI: 10.1016/j.commatsci.2010.09.029

Coaxial carbon nanotube/boron nitride nanotube (CNT/BNNT) multi-walled structures are ideal components in nanoelectronic systems. Our molecular dynamics simulations show that separate CNTs and BNNTs can self-assemble into stable coaxial structures in water under appropriate conditions. In case study three types of representative coaxial structures: (5, 5) CNT/(10, 10) BNNT, (5,5) BNNT/(10, 10) CNT and (5, 5) BNNT/(10, 10) BNNT are obtained. Simulation results also reveal that the self-assembly time between two separate BNNTs is increased remarkably due to the polarization of BNNTs in water. The mechanism of self-assembly among these tubes is demonstrated in detail. Further, coaxial (10, 10) BNNT/(10, 10) CNT/(15, 15) BNNT nanoheterojunctions are achieved for potential application in nanoelectronic systems. The present work shows the feasibility to fabricate the coaxial nanodevices such as insulating high-strength cables, high frequency oscillators and nanojunctions using self-assembly approach. (C) 2010 Elsevier B.V. All rights reserved.

Return to Publications page